首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new algorithm for efficient evaluation of two-electron repulsion integrals (ERIs) using uncontracted geometrical-type Gaussian basis functions is presented. Integrals are evaluated by the Habitz and Clementi method. The use of uncontracted geometrical basis sets allows grouping of basis functions into shells (s, sp, spd, or spdf) and processing of integrals in blocks (shell quartets). By utilizing information common to a block of integrals, this method achieves high efficiency. This technique has been incorporated into the KGNMOL molecular interaction program. Representative timings for a number of molecules with different basis sets are presented. The new code is found to be significantly faster than the previous program. For ERIs involving only s and p functions, the new algorithm is a factor of two faster than previously. The new program is also found to be competitive when compared with other standard molecular packages, such as HONDO-8 and Gaussian 86.  相似文献   

2.
A method to evaluate the nonrelativistic electron-repulsion, nuclear attraction and kinetic energy three-electron integrals over Slater orbitals appearing in Hylleraas-CI (Hy-CI) electron structure calculations on atoms is shown. It consists on the direct integration over the interelectronic coordinate r ij and the sucessive integration over the coordinates of one of the electrons. All the integrals are expressed as linear combinations of basic two-electron integrals. These last are solved in terms of auxiliary two-electron integrals which are easy to compute and have high accuracy. The use of auxiliary three-electron ones is avoided, with great saving of storage memory. Therefore this method can be used for Hy-CI calculations on atoms with number of electrons N ≥ 5. It has been possible to calculate the kinetic energy also in terms of basic two-electron integrals by using the Hamiltonian in Hylleraas coordinates, for this purpose some mathematical aspects like derivatives of the spherical harmonics with respect to the polar angles and recursion relations are treated and some new relations are given.  相似文献   

3.
The calculations by means of the superposition of correlated configurations method (Hylleraas-CI ), that is, the combination of configuration interaction with the Hylleraas-type correlation factors, needs the effective evaluation of some nontrivial integrals. This series of papers gives the formulas for all types of integrals needed for molecular calculations when Gaussian lobe functions are used as a basis set. The formulas for two-electron integrals are given in the present paper. The preliminary results for two-electron systems are presented.  相似文献   

4.
Bipolar expansion of the Ohno potential as a method of calculating two-center Coulomb integrals that appear in the NDDO approximation is generalized to one-center two-electron integrals. A unified semiempirical scheme is suggested for estimating two-electron interactions in molecules. This scheme can be readily extended to arbitrary Slater basis sets (including the s,p,d-orbitals) and involves no a priori data on the valent states of atoms. In this work, the scheme is employed to extend the semiempirical PM3 method to the s,p,d-basis set. The efficiency of the method is proven by test calculations of 24 chromium compounds (π-complexes, carbonyls, isocyanides, etc.). Scientific Research Institute of Chemistry at N. I. Lobachevskii Nizhnii Novgorod State University. Translated fromZhurnal Struktumoi Khimii, Vol. 36, No. 4, pp. 593–599, July–August, 1995. Translated by I. Izvekova.  相似文献   

5.
A method is proposed that reduces the computational effort of HF calculations considerably by reducing the number of two-electron integrals that have to be calculated. The following concepts are used: (i) approximation of the electron density by only few functions for the Coulomb part of the HF matrix; (ii) modification of this approximate density, to improve its Coulomb field; (iii) in the exchange part, a basis function χ is replaced by a function \documentclass{article}\pagestyle{empty}\begin{document}$ \tilde \chi $\end{document} consisting of fewer Gaussian lobes; (iv) the error caused by this replacement is reduced by a modification of the densities \documentclass{article}\pagestyle{empty}\begin{document}$ \tilde \chi _i \tilde \chi _j $\end{document} in the exchange integrals. The computation time of the integral part is reduced by a factor 6 for molecules containing five first-row atoms as, e.g., CF4, if one uses a 7S/3P basis set contracted to (5, 1, 1/3). The integral time increases roughly with n3, if n is the number of Gaussian lobes.  相似文献   

6.
To simplify the computation of many center two-electron integrals in large molecules a new type of basis set - called geometrical - is proposed. Its flexibility is tested for atoms from Z = 1 to 38 and for positive and negative ions. This basis is designed mainly for improving large-molecule computations but we have tested it with an accuracte computation for H2O.  相似文献   

7.
We consider integrals over symmetry-adapted basis functions that involve the coordinates of more than one electron. We focus on basis functions that can be written as products of one-electron functions and (say) a two-electron function. We show first that the two-electron parts of the basis functions can be absorbed into the operator, resulting in an integral over only one-electron basis functions, but a more complicated many-electron operator. We then prove a general formula for expressing such integrals in terms of symmetry-distinct integrals only. Received: 16 June 2000 / Accepted: 10 July 2000 / Published online: 19 January 2001  相似文献   

8.
The application of the Σ-separation method to the calculation of multicenter two-electron molecular integrals with Slater-type basis functions is reported. The approach is based on the approximation of a scalar component of the two-center atomic density by a two-center expansion over Slater-type functions. A least-squares fit was used to determine the coefficients of the expansion. The angular multipliers of the atomic density were treated exactly. It is shown that this approach can serve as a sufficiently accurate and fast algorithm for the calculation of multicenter two-electron molecular integrals with Slater-type basis functions. © 1995 John Wiley & Sons, Inc.  相似文献   

9.
In this paper, the SHARK integral generation and digestion engine is described. In essence, SHARK is based on a reformulation of the popular McMurchie/Davidson approach to molecular integrals. This reformulation leads to an efficient algorithm that is driven by BLAS level 3 operations. The algorithm is particularly efficient for high angular momentum basis functions (up to L = 7 is available by default, but the algorithm is programmed for arbitrary angular momenta). SHARK features a significant number of specific programming constructs that are designed to greatly simplify the workflow in quantum chemical program development and avoid undesirable code duplication to the largest possible extent. SHARK can handle segmented, generally and partially generally contracted basis sets. It can be used to generate a host of one- and two-electron integrals over various kernels including, two-, three-, and four-index repulsion integrals, integrals over Gauge Including Atomic Orbitals (GIAOs), relativistic integrals and integrals featuring a finite nucleus model. SHARK provides routines to evaluate Fock like matrices, generate integral transformations and related tasks. SHARK is the essential engine inside the ORCA package that drives essentially all tasks that are related to integrals over basis functions in version ORCA 5.0 and higher. Since the core of SHARK is based on low-level basic linear algebra (BLAS) operations, it is expected to not only perform well on present day but also on future hardware provided that the hardware manufacturer provides a properly optimized BLAS library for matrix and vector operations. Representative timings and comparisons to the Libint library used by ORCA are reported for Intel i9 and Apple M1 max processors.  相似文献   

10.
The analytical formulae for the one-center one- and two-electron integrals over Slater-transform-Preuss functions are given. The non-linear parameters are optimized for the minimum basis sets for the first-row atoms. the energies obtained are lower than those of single zeta, 4-31G and unconstrained 4G expansions and correspond to 99.96% of the Hartree-Fock energies.  相似文献   

11.
In order to calculate the one- and two-electron, two-center integrals over non-integer n Slater type orbitals, use is made of elliptical coordinates for the monoelectronic, hybrid, and Coulomb integrals. For the exchange integrals, the atomic orbitals are translated to a common center. The final integration is performed by Gaussian quadrature.As an example, an SCF ab initio calculation is performed for the LiH molecule, both with integer and non-integer principal quantum number.  相似文献   

12.
It is well known that in any ab initio molecular orbital (MO) calculation, the major task involves the computation of molecular integrals, among which the computation of Coulomb integrals are the most frequently encountered. As the molecular system gets larger, computation of these integrals becomes one of the most laborious and time consuming steps in molecular systems calculation. Improvement of the computational methods of molecular integrals would be indispensable to a further development in computational studies of large molecular systems. The atomic orbital basis functions chosen in the present work are Slater type functions. These functions can be expressed as finite linear combinations of B functions which are suitable to apply the Fourier transform method. The difficulties of the numerical evaluation of the analytic expressions of the integrals of interest arise mainly from the presence of highly oscillatory semi-infinite integrals. In this work, we present a generalized algorithm based on the nonlinear transformation of Sidi, for a precise and fast numerical evaluation of molecular integrals over Slater type functions and over B functions. Numerical results obtained for the three-center two-electron Coulomb and hybrid integrals over B functions and over Slater type functions. Comparisons with numerical results obtained using alternatives approaches and an existing code are listed.  相似文献   

13.
The computational considerations involved in calculating ordinary and rotatory intensities and electronic excitation energies in the random phase approximation (RPA ) are examined. We employ a localized orbital formulation in order to analyze the results in terms of local and charge-transfer excitations. Occupied orbitals are localized by the Foster–Boys procedure. The virtual space is transformed into a localized “valence” set that maximizes dipole strengths with the occupied counterparts, and a delocalized remainder. The two-electron integral transformation is performed with an efficient algorithm, based on Diercksen's, that generates only the particle–hole-type integrals required in the RPA . The lowest solutions of the RPA equations are obtained iteratively using a modification of the Davidson-Liu simultaneous vector expansion method. This allows the inclusion of the entire set of particle–hole states supported by a basis set of up to 102 orbitals. Calculations at this level give better excitation energies and intensities than SDCI methods, at substantial savings in computational effort. Comparative timings, computed results and analysis in terms of localized orbitals are given for planar and distorted ethylene using extended atomic orbital bases including diffuse functions. The results for planar ethylene are in excellent agreement with experiment.  相似文献   

14.
In the Hylleraas-CI method, first proposed by Sims and Hagstrom, correlation factors of the type r are included into the configurations of a CI expansion. The computation of the matrix elements requires the evaluation of different two-, three-, and four-electron integrals. In this article we present formulas for the two-electron integrals over Cartesian Gaussian functions, the most used basis functions in molecular calculations. Most of the integrals have been calculated analytically in closed form (some of them in terms of the incomplete Gamma function), but in one case a numerical integration is required, although the interval for the integration is finite and the integrand well-behaved. We have also reported on partial and preliminary computations for the H2 molecule using our four-center general formulas; a basis set of s- and p-type functions yielded at R = 1.4001 Å an energy of - 1.174380 a.u. to be compared with Kolos and Wolniewicz value of - 1.174475.  相似文献   

15.
A new integral approximation for use in molecular electronic structure calculations is proposed as an alternative to the traditional neglect of diatomic differential overlap models. The similarity between the symmetrically orthogonalized and the original basis functions (assumed orthonormal within each atomic set but nonorthogonal between different centers) is used to construct a robust approximation for the two-electron integrals, with the error being quadratic in the deviation between the products of the functions. Invariance properties of this procedure are rigorously proved. Numerical studies on a representative set of molecules at valence-only minimal basis Hartree-Fock level show that the approximation introduces relatively small errors, encouraging its future application in the semiempirical field.  相似文献   

16.
A standard Cholesky decomposition of the two-electron integral matrix leads to integral tables which have a huge number of very small elements. By neglecting these small elements, it is demonstrated that the recursive part of the Cholesky algorithm is no longer a bottleneck in the procedure. It is shown that a very efficient algorithm can be constructed when family type basis sets are adopted. For subsequent calculations, it is argued that two-electron integrals represented by Cholesky integral tables have the same potential for simplifications as density fitting. Compared to density fitting, a Cholesky decomposition of the two-electron matrix is not subjected to the problem of defining an auxiliary basis for obtaining a fixed accuracy in a calculation since the accuracy simply derives from the choice of a threshold for the decomposition procedure. A particularly robust algorithm for solving the restricted Hartree-Fock (RHF) equations can be speeded up if one has access to an ordered set of integral tables. In a test calculation on a linear chain of beryllium atoms, the advocated RHF algorithm nicely converged, but where the standard direct inversion in iterative space method converged very slowly to an excited state.  相似文献   

17.
The maximum numbers of distinct one- and two-electron integrals that arise in calculating the electronic energy of a molecule are discussed. It is shown that these may be calculated easily using the character table of the symmetry group of the set of basis functions used to express the wave function. Complications arising from complex group representations and from a conflict of symmetry between the basis set and the nuclear configuration are considered and illustrated by examples.  相似文献   

18.
In this study it is demonstrated that STO (Slater-type orbital) basis sets are particularly well suited to pseudospectral Hartree–Fock calculations. The reduction of two-electron integrals, to ones that are (at worst) equivalent to a one-electron integral over three centers, eliminates the need for slowly convergent one-center expansions. This allows all integrals to be calculated quickly and accurately in either spherical or ellipsoidal coordinates. A new variance-minimized variant of the pseudospectral method is derived and applied to a number of small closed-shell molecules. The performance of the algorithm is assessed relative to purely spectral calculations employing STO and GTO (Gaussian-type orbital) basis sets. The pseudospectral operator is used to assess the errors contained in solutions found by the purely spectral method. The suitability of a number of different de-aliasing set types is also examined. Orthogonal sets of hydrogen-like eigenfunctions were found to be optimal. ©1999 John Wiley & Sons, Inc. J Comput Chem 20: 1537–1548, 1999  相似文献   

19.
The simplified ab-initio method described in an earlier paper is tested on some hydrogen-containing molecules. The performance is slightly below that found previously for molecules composed entirely of first-row atoms but should be suitable for applications where limited numerical accuracy is sufficient. The hope of improved performance through limited expansion of the basis, especially on hydrogen, is not realised and so alternative treatments of the two-electron many-centre integrals should be sought if greater numerical accuracy is required.  相似文献   

20.
Methods for the computation of one- and two-electron spin-orbit integrals over Gaussian-type basis functions are presented. We show that existing nuclear-attraction and electron-repulsion integral codes can be readily adapted for the efficient evaluation of spin-orbit integrals; in particular, one can take advantage of recent advances in the computation of derivative integrals. Recurrence relations for the nuclear attraction integrals are also developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号