首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Numerical solutions using the SIMPLE algorithms for laminar flow over a backward-facing step are presented. Five differencing schemes were used: hybrid; quadratic upwind (QUICK); second-order upwind (SOUD); central-differencing and a novel scheme named second-order upwind biased (SOUBD). The SOUBD scheme is shown to be part of a family of schemes which include the central-differencing, SOUD and QUICK schemes for uniform grids. The results of the backward-facing step problem are presented and are compared with other numerical solutions and experimental data to evaluate the accuracy of the differencing schemes. The accuracy of the differencing schemes was ascertained by using uniform grids of various grid densities. The QUICK, SOUBD and SOUD schemes gave very similar accurate results. The hybrid scheme suffered from excessive diffusion except for the finest grids and the central-differencing scheme only converged for the finest grids.  相似文献   

2.
Numerical studies of turbulent flow in an axisymmetric 45° expansion combustor and bifurcated diffuser are presented. The Navier-Stokes equations incorporating a k–? model were solved in a non-orthogonal curvillinear co-ordinate system. A zonal grid method, wherein the flow field was divided into several subsections, was developed. This approach permitted different computational schemes to be used in the various zones. In addition, grid generation was made a more simple task. However, treatment of the zonal boundaries required special handling. Boundary overlap and interpolating techniques were used and an adjustment of the flow variables was required to assure conservation of mass flux. Three finite differencing methods—hybrid, quadratic upwind and skew upwind—were used to represent the convection terms. Results were compared with existing experimental data. In general, good agreement between predicted and measured values was obtained.  相似文献   

3.
This paper considers the use of various finite differencing schemes for the computation of flows involving regions of recirculation. Standard first-order hybrid schemes, vector (or skew) schemes and second-order schemes are used to predict laminar flows in a channel containing a constriction and over a normal flat plate with a downstream splitter plate. In the former case the results are compared with those of other workers and with the implications of analytic theories for the viscous dominated flow around the sharp corner. Attention is concentrated on the effects of errors arising from the use of non-uniform grids and it is shown that higher-order differencing schemes are generally much less susceptible to these than the simpler schemes. The major conclusion is that for flows containing regions where pressure gradients largely balance the convective terms in the momentum equations, in addition to other regions where convection and diffusion balance, higher order differencing schemes are likely to be essential if accurate predictions are required on grids without excessive numbers of nodes. It is argued that similar conclusions must hold for high Reynolds number turbulent flows.  相似文献   

4.
A generalized formulation is applied to implement the quadratic upstream interpolation (QUICK) scheme, the second-order upwind (SOU) scheme and the second-order hybrid scheme (SHYBRID) on non-uniform grids. The implementation method is simple. The accuracy and efficiency of these higher-order schemes on non-uniform grids are assessed. Three well-known bench mark convection-diffusion problems and a fluid flow problem are revisited using non-uniform grids. These are: (1) transport of a scalar tracer by a uniform velocity field; (2) heat transport in a recirculating flow; (3) two-dimensional non-linear Burgers equations; and (4) a two-dimensional incompressible Navier-Stokes flow which is similar to the classical lid-driven cavity flow. The known exact solutions of the last three problems make it possible to thoroughly evaluate accuracies of various uniform and non-uniform grids. Higher accuracy is obtained for fewer grid points on non-uniform grids. The order of accuracy of the examined schemes is maintained for some tested problems if the distribution of non-uniform grid points is properly chosen.  相似文献   

5.
A finite volume method for the calculation of laminar and turbulent fluid flows inside constricted tubes and ducts is described. The selected finite volume method is based on curvilinear non-orthogonal co-ordinates (body-fitted co-ordinates) and a non-staggered grid arrangement. The grids are either generated by transfinite interpolation or an elliptic grid generator. The method is employed for calculation of laminar flows through a tube, a converging-diverging duct and different constricted tubes by both a two- and a three-dimensional computer program. In addition, turbulent flow through an axisymmetric constricted tube is calculated. Both the power law scheme and the second-order upwind scheme are used. The calculated results are compared with the experimental data and with other numerical solutions.  相似文献   

6.
In the framework of a cell-centered finite volume method (FVM), the advection scheme plays the most important role in developing FVMs to solve complicated fluid flow problems for a wide range of Reynolds numbers. Advection schemes have been widely developed for FVMs employing pressure-velocity coupling methodology in the incompressible flow limit. In this regard, the physical influence upwind scheme (PIS) is developed for a cell-centered finite volume coupled solver (FVCS) using a pressure-weighted interpolation method for linking the pressure and velocity fields. The well-known exponential differencing scheme and skew upwind differencing scheme are also deployed in the current FVCS and their numerical results are presented. The accuracy and convergence of the present PIS are evaluated solving flow in a lid-driven square cavity, a lid-driven skewed cavity, and over a backward-facing step (BFS). The flow within the lid-driven square cavity is numerically solved at Reynolds numbers from 400 to 10 000 on a relatively coarse mesh with respect to other reported solutions. The lid-driven skewed cavity test case at Reynolds number of 1000 demonstrates the numerical performance of the present PIS on nonorthogonal grids. The flow over a BFS at Reynolds number of 800 is numerically solved to examine capabilities of current FVCS employing the current PIS in inlet-outlet flow computations. The numerical results obtained by the current PIS are in excellent agreement with those of benchmark solutions of corresponding test cases. Incorporating implicit role of pressure terms in a pressure-weighted interpolation method and development of PIS provides satisfactory solution convergence alongside the numerical accuracy for the current FVCS. A particular numerical verification is performed for the V velocity calculation within the BFS flow field, which confirms the reliability of present PIS.  相似文献   

7.
An estimate on the conservation error due to the non-conservative data interpolation scheme for overset grids is given in this paper. It is shown that the conservation error is a first-order term if second-order conservative schemes are employed for the Chimera grids and if discontinuities are located away from overlapped grid interfaces. Therefore in the limit of global grid refinement, valid numerical solutions should be obtained with a data interpolation scheme. In one demonstration case the conservation error in the original Chimera scheme was shown to affect flow even without discontinuities on coarse to medium grids. The conservative Chimera scheme was shown to give significantly better solutions than the original Chimera scheme on these grids with other factors being the same.  相似文献   

8.
非结构/混合网格具有极强的几何灵活性,在复杂外形飞行器的气动力特性数值模拟中已得到广泛应用,但目前还难以准确地预测气动热环境。本文从非结构/混合网格热流计算的三个需求出发,选取了多维迎风方法,并与其他方法进行了对比研究。以二维圆柱高超声速绕流这一Benchmark典型问题为例,对比研究了多维迎风方法和几种广泛使用的无粘通量格式(Roe格式、Van Leer格式和AUSMDV格式)对混合网格热流计算精度的影响。结果表明,多维迎风方法在热流计算精度、鲁棒性以及收敛性方面表现良好。最后,将多维迎风方法应用于常规混合网格上的圆柱和钝双锥绕流问题,均得到了较好的热流计算结果,为非结构/混合网格热流计算在复杂高超飞行器中的应用奠定了基础。  相似文献   

9.
本文采用三种不同亚网格尺度模型对带有V型稳定器的模型燃烧室二维瞬态紊流流动进行了大涡模拟。并在交错网格系下用SIMPLE算法和混合差分格式求解离散方程。数值研究拟不同型式入口速度分布和不同亚网格尺度模型下模型燃烧室二维瞬态紊流流场。计算结果表明不同入口速度分布和不同亚网格尺度模型对瞬态流场和出口速度分布有一定的影响。本文通过数值模拟,揭示了V型稳定器后旋涡的产生和脱落过程。通过计算结果及实验数据的比较可知,本文采用的亚网格尺度模型可以用来模拟模型燃烧室紊流流场及稳定器后面回流区的流动情况。  相似文献   

10.
A numerical study of laminar flows is carried out to examine the performance of two second-order discretization schemes: a total variation diminishing scheme and a second-order upwind scheme. The former has the same form as the standard first-order hybrid central upwind scheme, but with a numerical diffusion reduced by the Van Leer limiter; the latter is based on the linear extrapolation of cell face values using the two upwind neighbors. A collocated grid arrangement is used; oscillations which could be generated by pressure–velocity decoupling are avoided via the Rhie–Chow interpolation. Two iterative solution methods are used: (i) the deferred correction procedure proposed by Khosla and Rubin and (ii) implicit treatment of the second-order upwind contribution. Three two-dimensional laminar test cases are considered for assessment: the plane lid-driven cavity, the plane backward facing step and the axisymmetric pipe with sudden contraction. Experimental data are available for the two last cases. Both the total variation diminishing and the second-order upwind schemes give wiggle-free results and can predict the flowfields more accurately than the standard first-order hybrid central upwind scheme. © 1998 John Wiley & Sons, Ltd.  相似文献   

11.
The present work is concerned with the numerical calculation of the turbulent flow field around the stern of ship models. The finite volume approximation is employed to solve the Reynolds equations in the physical domain using a body-fitted, locally orthogonal curvilinear co-ordinate system. The Reynolds stresses are modelled according to the standard k-ε turbulence model. Various numerical schemes (i.e. hybrid, skew upwind and central differencing) are examined and grid dependence tests have been performed to compare calculated with experimental results. Moreover, a direct solution of the momentum equations within the near-wall region is tried to avoid the disadvantages of the wall function approach. Comparisons between calculations and measurements are made for two ship models, i.e. the SSPA and HSVA model.  相似文献   

12.
In this paper, a local mesh refinement (LMR) scheme on Cartesian grids for large‐eddy simulations is presented. The approach improves the calculation of ghost cell pressures and velocities and combines LMR with high‐order interpolation schemes at the LMR interface and throughout the rest of the computational domain to ensure smooth and accurate transition of variables between grids of different resolution. The approach is validated for turbulent channel flow and flow over a matrix of wall‐mounted cubes for which reliable numerical and experimental data are available. Comparisons of predicted first‐order and second‐order turbulence statistics with the validation data demonstrated a convincing agreement. Importantly, it is shown that mean streamwise velocities and fluctuating turbulence quantities transition smoothly across coarse‐to‐fine and fine‐to‐coarse interfaces. © 2016 The Authors International Journal for Numerical Methods in Fluids Published by John Wiley & Sons Ltd  相似文献   

13.
不可压N-S方程高效算法及二维槽道湍流分析   总被引:6,自引:1,他引:5  
构造了基于非等距网格的迎风紧致格式,并将其与三阶精度的Adams半隐方法相结合,构造了求解不可压N-S方程高效算法。该算法利用基于交错网格的离散形式的压力Poisson方程求解压力项,解决了边界处的残余散度问题;同时还利用快速Fourier变换将方程的隐式部分解耦,离散后的代数方程组利用追赶法求解,大大减少了计算量。通过对二维槽道流动的数值模拟,证实了所构造的数值方法具有精度高,稳定性好,能抑制混淆误差等优点,同时具有很高的计算效率,是进行壁湍流直接数值模拟的有效方法。在数值模拟的基础上对二维槽道流动进行了分析,得到了Reynolds数从6000到15000的二维流动饱和态解(所谓“二维槽道湍流”);定性及定量结果均与他人的数值计算结果吻合十分理想。对流场进行了分析,指出了“二维湍流”与三维湍流统计特性的区别。  相似文献   

14.
The paper reports on a numerical study of turbulent confined jets in a conical duct with a 5° divergence. The flow has a large ratio of jet to ambient velocities at the entrance so that it gives rise to strong recirculation. The calculations are carried out with a general finite volume method designed for calculating incompressible elliptic flows with complex boundaries. Turbulence is simulated by the standard κ–? model. The sensitivity of the solution to numerical discretization errors is examined using three convection schemes, i.e. hybrid central/upwind differencing, QUICK and SOUCUP, on two grids consisting of 68 × 50 and 102 × 82 points respectively. An examination is also made of the influence of inlet boundary conditions on the predicted flow field. The computed results are compared with experimental data for mean axial velocity, turbulent shear stress and turbulent kinetic energy profiles. It is shown that the calculations reproduce the essential features of the flow observed in the experiments.  相似文献   

15.
A high-order upwind scheme has been developed to capture the vortex wake of a helicopter rotor in the hover based on chimera grids. In this paper, an improved fifth-order weighted essentially non-oscillatory (WENO) scheme is adopted to interpolate the higher-order left and right states across a cell interface with the Roe Riemann solver updating inviscid flux, and is compared with the monotone upwind scheme for scalar conservation laws (MUSCL). For profitably capturing the wake and enforcing the period boundary condition, the computation regions of flows are discretized by using the structured chimera grids composed of a fine rotor grid and a cylindrical background grid. In the background grid, the mesh cells located in the wake regions are refined after the solution reaches the approximate convergence. Considering the interpolation characteristic of the WENO scheme, three layers of the hole boundary and the interpolation boundary are searched. The performance of the schemes is investigated in a transonic flow and a subsonic flow around the hovering rotor. The results reveal that the present approach has great capabilities in capturing the vortex wake with high resolution, and the WENO scheme has much lower numerical dissipation in comparison with the MUSCL scheme.  相似文献   

16.
A new monotonic scheme for the approximation of steady scalar transport is formulated and implemented within a collocated finite-volume/pressure-correction algorithm for general turbulent flows in complex geometries. The scheme is essentially a monotonic implementation of the quadratic QUICK interpolation and uses a continuous and compact limiter to secure monotonicity. The principal purpose is to allow an accurate and fully bounded, hence stable, approximation of turbulence convection in the context of two-equation eddy viscosity and Reynolds stress transport modelling of two- and three-dimensional flows, both subsonic and transonic. Among other benefits, this capability permits an assessment to be made of the adequacy of approximating turbulence convection with first-order upwind schemes in conjunction with higher-order formulations for mean-flow properties—a widespread practice. The performance characteristics of the bounded scheme are illustrated by reference to computations for scalar transport, for a transonic flow in a Laval nozzle, for one separated laminar flow and for two separated turbulent flows computed with a non-linear RNG model and full Reynolds stress closure.  相似文献   

17.
A three-dimensional extension of the QUICK scheme adapted for the finite volume method and non-uniform grids is presented to handle convection-diffusion problems for high Peclet numbers and steep gradients. The algorithm is based on three-dimensional quadratic interpolation functions in which the transverse curvature terms are maintained and the diagonal dominance of the coefficient matrix is preserved. All formulae are explicitly given in an appendix. Results obtained with the classical upwind (UDS), the simplified QUICK (transverse terms neglected) and the present full QUICK schemes are given for two benchmark problems, one two-dimensional, steady state and the other three-dimensional, unsteady state. Both QUICK schemes are shown to give superior solutions compared with the UDS in terms of accuracy and efficiency. The full QUICK scheme performs better than the simplified QUICK, giving even for coarse grids acceptable results closer to the analytical solutions, while the computational time is not affected much.  相似文献   

18.
A one-dimensional transport test applied to some conventional advective Eulerian schemes shows that linear stability analyses do not guarantee the actual performances of these schemes. When adopting the Lagrangian approach, the main problem raised in the numerical treatment of advective terms is a problem of interpolation or restitution of the transported function shape from discrete data. Several interpolation methods are tested. Some of them give excellent results and these methods are then extended to multi-dimensional cases. The Lagrangian formulation of the advection term permits an easy solution to the Navier-Stokes equations in primitive variables V, p, by a finite difference scheme, explicit in advection and implicit in diffusion. As an illustration steady state laminar flow behind a sudden enlargement is analysed using an upwind differencing scheme and a Lagrangian scheme. The importance of the choice of the advective scheme in computer programs for industrial application is clearly apparent in this example.  相似文献   

19.
20.
Unstructured meshes allow easily representing complex geometries and to refine in regions of interest without adding control volumes in unnecessary regions. However, numerical schemes used on unstructured grids have to be properly defined in order to minimise numerical errors. An assessment of a low Mach algorithm for laminar and turbulent flows on unstructured meshes using collocated and staggered formulations is presented. For staggered formulations using cell‐centred velocity reconstructions, the standard first‐order method is shown to be inaccurate in low Mach flows on unstructured grids. A recently proposed least squares procedure for incompressible flows is extended to the low Mach regime and shown to significantly improve the behaviour of the algorithm. Regarding collocated discretisations, the odd–even pressure decoupling is handled through a kinetic energy conserving flux interpolation scheme. This approach is shown to efficiently handle variable‐density flows. Besides, different face interpolations schemes for unstructured meshes are analysed. A kinetic energy‐preserving scheme is applied to the momentum equations, namely, the symmetry‐preserving scheme. Furthermore, a new approach to define the far‐neighbouring nodes of the quadratic upstream interpolation for convective kinematics scheme is presented and analysed. The method is suitable for both structured and unstructured grids, either uniform or not. The proposed algorithm and the spatial schemes are assessed against a function reconstruction, a differentially heated cavity and a turbulent self‐igniting diffusion flame. It is shown that the proposed algorithm accurately represents unsteady variable‐density flows. Furthermore, the quadratic upstream interpolation for convective kinematics scheme shows close to second‐order behaviour on unstructured meshes, and the symmetry‐preserving is reliably used in all computations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号