首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Velocity varies rapidly near sheared boundaries. Therefore in many practical fluid problems it can be inefficient to solve discrete equations with velocity as the dependent variable. Conversely, shear stress varies slowly near sheared boundaries, suggesting that it may be well suited for use as the dependent variable in discrete equations. This paper describes a formulation of the internal mode equations for a three-dimensional hydrodynamic model using shear stress as the dependent variable. The resulting direct stress solution (DSS), coupled with a spatial discretization using linear finite elements, yields a system matrix that can be set up and solved with the efficiency of a banded matrix with bandwidth 8. If the eddy viscosity distribution is assumed to be piecewise linear over the depth (with an arbitrary number of time-varying segments), the recovery of velocity from stress can be easily accomplished in closed form, thereby avoiding any difficulty resulting from the logarithmic singularity in the velocity profile that occurs at a boundary. Results from tidal and wind-driven test cases with realistic boundary layers are used to demonstrate the accuracy and computational advantages of a DSS formulation versus a standard velocity-based formulation.  相似文献   

2.
The present paper is concerned with the propagation of torsional surface waves in a heterogeneous anisotropic half-space under the initial compressive stress. The heterogeneity in the half-space is caused by the linear variation in rigidity, initial compressive stress and density. The solution part of the problem involves the use of Whittaker function. The dispersion equation has been obtained in a closed form, which shows the variation of phase velocity with corresponding wave number. Effects of anisotropy and initial stress have been shown by the means of graphs for different anisotropic materials. It has found that the phase velocity of torsional waves decreases with increment in initial stress and inhomogeneity. Obtained phase velocity of torsional surface wave is found to be less than the shear wave velocity, which agrees with the standard result.  相似文献   

3.
An exact analytical solution is presented for the laminar boundary-layer flow over a semi-infinite flat plate subjected to a type of similarity preserving suction. The solution is developed for the case of a plate immersed in either a uniform compressible stream with viscosity proportional to temperature or a uniform incompressible stream with constant viscosity. The problem is formulated in Crocco's variables. It is described by a second-order, non-linear, ordinary differential (and singular) boundary-value problem for the shear stress as a function of the velocity in the boundary layer. A unique solution is shown to exist and to possess a power series representation for all magnitudes of suction. The series is constructed explicitly and provides a transcendental equation for the shear stress at the plate (the important skin friction) which can be solved to any desired accuracy. Examples of upper and lower bounds for the wall shear are presented for several magnitudes of suction and confirm the reasonable accuracy of results obtained heretofore only by numerical solutions of the problem. In addition to the intrinsic value of the technique developed, it can be the basis of accurate checks for the numerical solution of more complex problems.  相似文献   

4.
A theoretical analysis is presented which brings steady laminar film flow of power-law fluids within the framework of classical boundary layer theory. The upper part of the film, which consists of a developing viscous boundary layer and an external inviscid freestream, is treated separately from the viscous dominated part of the flow, thereby taking advantage of the distinguishing features of each flow region. It is demonstrated that the film boundary layer developing along a vertical wall can be described by a generalized Falkner-Skan type equation originally developed for wedge flow. An exact similarity solution for the velocity field in the film boundary layer is thus made available.Downstream of the boundary layer flow regime the fluid flow is completely dominated by the action of viscous shear, and fairly accurate solutions are obtained by the Von Karman integral method approach. A new form of the velocity profile is assumed, which reduces to the exact analytic solution for the fully-developed film. By matching the downstream integral method solution to the upstream generalized Falkner-Skan similarity solution, accurate estimates for the hydrodynamic entrance length are obtained. It is also shown that the flow development in the upstream region predicted by the approximate integral method closely corresponds to the exact similarity solution for that flow regime. An analytical solution of the resulting integral equation for the Newtonian case is compared with previously published results.  相似文献   

5.
暖季强降雨对多年冻土南界斜坡路基稳定性影响分析   总被引:2,自引:0,他引:2  
蔡书鹏  杨林  唐川林 《力学学报》2008,40(2):250-254
为阐明表面活性剂水溶液的减阻作用,使用LDV对零压梯度的二维湍流平板边界层中的CTAB 表面活性剂水溶液的湍流特性进行了实验研究. 结果表明:与牛顿流体相比,CTAB水溶液边 界层的粘性底层增厚;主流时均速度分布有被层流化的趋势,对数分布域上移;主流方向速 度湍动强度峰值减小,且远离壁面,在靠近边界层中部,出现第2峰值;垂直于主流方向的 速度湍动强度受到了大幅度抑制,雷诺应力沿着边界层厚度方向几乎为零. 结果说明CTAB 水溶液具有减弱湍流湍动各个成分相关度的作用,从而能够使雷诺应力降低、湍流能量生成 项减小最终降低流体的输送动力.  相似文献   

6.
Computation of vertical velocity within the confines of a three-dimensional, finite element model is a difficult but important task. This paper examines four approaches to the solution of the overdetermined system of equations arising when the first-order continuity equation is solved in conjunction with two boundary conditions. The traditional (TRAD) method neglects one boundary condition, solving the continuity equation with the remaining boundary condition. The vertical derivative of continuity (VDC) method involves solution of the second-order equation obtained by differentiation of the continuity equation with respect to the vertical co-ordinate. The least squares (LS) method minimizes the residuals of the continuity equation (in discrete form) and the two boundary conditions. The adjoint (ADJ) method minimizes the residuals of the continuity equation (in continuous form) and the two boundary conditions. Two domains are considered: a quarter-annular harbour and the southwest coast of Vancouver Island. Results indicate that the highest-quality solution is obtained with both LS and ADJ. Furthermore, ADJ requires less CPU and memory than LS. Therefore the optimal method for computation of vertical velocity in a three-dimensional finite element model is the adjoint (ADJ) method. © 1997 John Wiley & Sons, Ltd.  相似文献   

7.
Water waves in coastal areas are generally nonlinear, exhibiting asymmetric velocity profiles with different amplitudes of crest and trough. The behaviors of the boundary layer under asymmetric waves are of great significance for sediment transport in natural circumstances. While previous studies have mainly focused on linear or symmetric waves, asymmetric wave-induced flows remain unclear, particularly in the flow regime with high Reynolds numbers.Taking cnoidal wave as a typical example of asymmetric waves, we propose to use an infinite immersed plate oscillating cnoidally in its own plane in quiescent water to simulate asymmetric wave boundary layer. A large eddy simulation approach with Smagorinsky subgrid model is adopted to investigate the flow characteristics of the boundary layer. It is verified that the model well reproduces experimental and theoretical results. Then a series of numerical experiments are carried out to study the boundary layer beneath cnoidal waves from laminar to fully developed turbulent regimes at high Reynolds numbers, larger than ever studied before.Results of velocity profile, wall shear stress, friction coefficient, phase lead between velocity and wall shear stress, and the boundary layer thickness are obtained. The dependencies of these boundary layer properties on the asymmetric degree and Reynolds number are discussed in detail.  相似文献   

8.
润滑力学中非牛顿流动的普遍Reynolds方程   总被引:5,自引:0,他引:5  
杨沛然  温诗铸 《力学学报》1991,23(3):283-289
本文导出了润滑力学中关于非牛顿流动的普遍 Reynolds 方程。这一方程适用于多种非牛顿流动模型,可以用于解算热流体动力润滑或热弹性流体动力润滑膜的压力分布。本文给出了一种同时求出剪应力、剪切率、速度和等效粘度的解法,并以两种润滑力学中常用的流变模型为例,应用这一方程得到了线接触热弹性流体动力润滑问题的数值解。  相似文献   

9.
In order to simulate flows in the shallow water limit, the full incompressible Navier–Stokes equations with free boundaries are solved using a single layer of finite elements. This implies a polynomial approximation of the velocity profile in the vertical direction, which in turn distorts the wave speed. This fact is verified by numerical results: the wave speed depends on the vertical discretization. When at least two layers of finite elements are used, the boundary layer at the bottom can be simulated and the correct solution for the shallow water limit is recovered. Then this algorithm is applied to the prediction of Tsunami event.  相似文献   

10.
基于标准k-ε湍流模型,首先利用湍流粘度方程和剪切应力在整个边界层内恒定的假设,推导出一类耗散率表达式,并根据常用的湍动能入口剖面方程以及平均风速剖面方程,计算获得相应的耗散率方程;然后在输运方程中添加自定义源项,通过已经确定的平均速度方程、湍动能方程、耗散率方程计算得到相应输运方程的自定义源项表达式,并进行空风洞数值模拟,从而得到了一类满足平衡大气边界层的来流边界条件.通过将这种边界条件与由湍流平衡条件得到的边界条件进行比较,表明本方法获得的边界条件更适用.并且,本方法无需考虑修正壁面函数和修正湍流模型常数,因而计算更为简单,可为平衡大气边界层的研究提供一种新的思路.  相似文献   

11.
All studies concerning laminar free convection along a vertical isothermal plate in water at low temperatures have been conducted assuming constant dynamic viscosity and thermal conductivity both taken at ambient or film temperature. In this study the problem has been treated taking into account the temperature dependence of all water physical properties. The results are obtained with the numerical solution of the boundary layer equations. The variation of μ and k with temperature has a small influence on wall heat transfer but a strong influence on wall shear stress. These quantities show a significant reduction at density extremum.  相似文献   

12.
A method is developed to infer the wall shear stress for three-dimensional turbulent boundary layers based on the assumption that the resultant surface shear stress and the effective velocity based on Prahlad's model correlates the velocity profile into its two-dimensional form. Existence of the near wall region similarity has been demonstrated for three-dimensional turbulent boundary layers.  相似文献   

13.
Orthotropic materials weakened by a doubly periodic array of cracks under far-field antiplane shear are investigated, where the fundamental cell contains four cracks of unequal size. By applying the mapping technique, the elliptical function theory and the theory of analytical function boundary value problems, a closed form solution of the whole-field stress is obtained. The exact formulae for the stress intensity factor at the crack tip and the effective antiplane shear modulus of the cracked orthotropic material are derived. A comparison with the finite element method shows the efficiency and accuracy of the present method. Several illustrative examples are provided, and an interesting phenomenon is observed, that is, the stress intensity factor and the dimensionless effective modulus are independent of the material property for a doubly periodic cracked isotropic material, but depend strongly on the material property for the doubly periodic cracked orthotropic material. Such a phenomenon for antiplane problems is similar to that for in-plane problems. The present solution can provide benchmark results for other numerical and approximate methods.  相似文献   

14.
It is highly attractive to develop an efficient and flexible large eddy simulation(LES) technique for high-Reynolds-number atmospheric boundary layer(ABL) simulation using the low-order numerical scheme on a relatively coarse grid, that could reproduce the logarithmic profile of the mean velocity and some key features of large-scale coherent structures in the outer layer. In this study, an improved near-wall correction scheme for the vertical gradient of the resolved streamwise velocity in the s...  相似文献   

15.
输气管道壁面涂料减阻机理的实验研究   总被引:1,自引:0,他引:1  
姜楠  孙伟 《力学与实践》2006,28(1):32-35
用IFA-300热线风速仪以高于对应最小湍流时间尺度的分辨率精细测量了风洞中不同壁面涂料的管道湍流边界层不同法向位置流向速度分量的时间序列信号,利用湍流边界层近壁区域对数律平均速度剖面与壁面摩擦速度、流体黏性系数等内尺度物理量的关系和壁面摩擦速度与壁面摩擦切应力的关系,在准确测量湍流边界层近壁区域对数律平均速度剖面的基础上,间接测量湍流边界层的壁面摩擦阻力.对不同壁面涂料的壁湍流脉动速度信号用子波分析进行多尺度分解,用子波系数的瞬时强度因子和平坦因子检测管道湍流边界层中的多尺度相干结构,提取不同尺度相干结构的条件相位平均波形,对比研究输气管道壁面涂料的减阻机理.  相似文献   

16.
A complete solution has been obtained for the problem of multiple interacting spherical inhomogeneities with a Gurtin-Murdoch interface model that includes both surface tension and surface stiffness effects. For this purpose, a vectorial spherical harmonics-based analytical technique is developed. This technique enables solution of a wide class of elasticity problems in domains with spherical boundaries/interfaces and makes fulfilling the vectorial boundary or interface conditions a routine procedure. A general displacement solution of the single-inhomogeneity problem is sought in a form of a series of the vectorial solutions of the Lame equation. This solution is valid for any non-uniform far-field load and it has a closed form for polynomial loads. The superposition principle and re-expansion formulas for the vectorial solutions of the Lame equation extend this theory to problems involving multiple inhomogeneities. The developed semi-analytical technique precisely accounts for the interactions between the nanoinhomogeneities and constitutes an efficient computational tool for modeling nanocomposites. Numerical results demonstrate the accuracy and numerical efficiency of the approach and show the nature and extent to which the elastic interactions between the nanoinhomogeneities with interface stress affect the elastic fields around them.  相似文献   

17.
Wall slip is often observed in a highly sheared fluid film in a solid gap. This makes a difficulty in mathematical analysis for the hydrodynamic effect because fluid velocity at the liquid–solid interfaces is not known a priori. If the gap has a convergent–divergent wedge, a free boundary pressure condition, i.e. Reynolds pressure boundary condition, is usually used in the outlet zone in numerical solution. This paper, based on finite element method and parametric quadratic programming technique, gives a numerical solution technique for a coupled boundary non‐linearity of wall slip and free boundary pressure condition. It is found that the numerical error decreases with the number of elements in a negative power law having an index larger than 2. Our method does not need an iterative process and can simultaneously gives rise to fluid film pressure distribution, wall slip velocity and surface shear stress. Wall slip always decreases the hydrodynamic pressure. Large wall slip even causes a null hydrodynamic pressure in a pure sliding solid gap. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
This paper investigates the unsteady stagnation-point flow and heat transfer over a moving plate with mass transfer, which is also an exact solution to the unsteady Navier-Stokes(NS) equations. The boundary layer energy equation is solved with the closed form solutions for prescribed wall temperature and prescribed wall heat flux conditions. The wall temperature and heat flux have power dependence on both time and spatial distance. The solution domain, the velocity distribution, the flow field, ...  相似文献   

19.
Three-dimensional edge cracks are analyzed using the Self-Similar Crack Expansion (SSCE) method with a boundary integral equation technique. The boundary integral equations for surface cracks in a half space are presented based on a half space Green's function (Mindlin, 1936). By using the SSCE method, the stress intensity factors are determined by the crack-opening displacement over the crack surface. In discrete boundary integral equations, the regular and singular integrals on the crack surface elements are evaluated by an analytical method, and the closed form expressions of the integrals are given for subsurface cracks and edge crakcs. This globally numerical and locally analytical method improves the solution accuracy and computational effort. Numerical results for edge cracks under tensile loading with various geometries, such as rectangular cracks, elliptical cracks, and semi-circular cracks, are presented using the SSCE method. Results for stress intensity factors of those surface breaking cracks are in good agreement with other numerical and analytical solutions.  相似文献   

20.
We describe a simple method for estimating turbulent boundary layer wall friction using the fit of measured velocity data to a boundary layer model profile that extends the logarithmic profile all the way to the wall. Two models for the boundary layer profile are examined, the power-series interpolation scheme of Spalding and the Musker profile which is based on the eddy viscosity concept. The performance of the method is quantified using recent experimental data in zero pressure gradient flat-plate turbulent boundary layers, and favorable pressure gradient turbulent boundary layers in a pipe, for which independent measurements of wall shear are also available. Between the two model profiles tested, the Musker profile performs much better than the Spalding profile. Results show that the new procedure can provide highly accurate estimates of wall shear with a mean error of about 0.5% in friction velocity, or 1% in shear stress, an accuracy that is comparable to that from independent direct measurements of wall shear stress. An important advantage of the method is its ability to provide accurate estimates of wall shear not only based on many data points in a velocity profile but also very sparse data points in the velocity profile, including only a single data point such as that originating from a near-wall probe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号