首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The far-infrared spectra of gaseous and solid ethyl nitrate, CH3CH2ONO2, have been recorded from 500 to 50 cm−1. The fundamental asymmetric torsion of the trans conformer which has a heavy atom plane has been observed at 112.50 cm−1 with two excited states failing to lower frequencies, and the corresponding fundamental torsion of the gauche conformer was observed at 109.62 cm−1 with two excited states also falling to lower frequencies. The results of a variable temperature Raman study indicate that the trans conformer is more stable than the gauche conformer by 328 ± 96 cm−1 (938 ± 275 cal mol−1). An asymmetric potential function governing the internal rotation about the CH2O bond is reported which gives a trans to gauche barrier of 894 ± 15 cm−1 (2.56 ± 0.04 kcal mol−1) and a gauche to gauche barrier of 3063 ± 68 cm−1 (8.76 ± 0.20 kcal mol−1) with the trans conformer more stable by 220 ± 148 cm−1 (0.63 ± 0.42 kcal mol−1). Transitions arising from the symmetric CH3 and NO2 torsions are observed for both conformers, from which the threefold and twofold periodic barriers to internal rotation have been calculated. For the trans conformer the values are 1002 cm−1 (2.87 kcal mol−1) and 2355 ± 145 cm−1 (6.73 ± 0.42 kcal mol−1) and for the gauche conformer they are 981 cm−1 (2.81 kcal mol−1) and 2736 ± 632 cm−1 (7.82 ± 1.81 kcal mol−1) for the CH3 and NO2 rotors, respectively. These results are compared to the corresponding quantities for some similar molecules.  相似文献   

2.
The Raman (3100–10 cm−1) and infrared (3100–30 cm−1) spectra of difluoroacetyl chloride, CHF2CClO, in the gas and solid phases have been recorded. Additionally, the Raman spectrum of the liquid with qualitative depolarization ratios has been obtained. From these data, a trans/gauche equilibrium is proposed in the gas and liquid phases, with the trans conformer (hydrogen atom eclipsing the oxygen atom and trans to the chlorine atom) the more stable form in the gas, but the gauche rotamer is more stable in the liquid and is the only form present in the annealed solid. From the study of the Raman spectrum of the gas at different temperatures, a value of 272 ± 115 cm−1 (778 ± 329 cal mol−1) was determined for ΔH, with the trans conformer the more stable form. Similar studies were carried out on the liquid and a value of 109 ± 9 cm−1 (312 ± 26 cal mol−1) was obtained for ΔH, but now the gauche conformer is the more stable form. A potential function for the conformational interchange has been determined with the following potential constants: V1 = 397 ± 23, V2 = −101 ± 5, V3 = 474 ± 3, V4 = −50 ± 3, and V6 = 10 ± 2 cm−1. This potential has the trans rotamer more stable by 179 ± 31 cm−1 (512 ± 89 cal mol−1) than the gauche conformer. A complete vibrational assignment is proposed for both conformers based on infrared band contours, Raman depolarization data, group frequencies and normal coordinate calculations. The experimental conformational stability, barriers to internal rotation, and fundamental vibrational frequencies are compared with those obtained from ab initio Hartree-Fock gradient calculations employing both the RHF/3-21G* and RHF/6-31G* basis sets, and to the corresponding quantities obtained for some similar molecules.  相似文献   

3.
The infrared spectra of 1,1-dimethylhydrazine, (CH3)2NNH2, and two isotopomers, (CD3)2NNH2 and (CH3)2NND2, have been recorded in the region between 600 and 100 cm−1. Very rich and complex spectra were obtained and analysis of the data has been carried out. The interpretation of the spectra arising from the two methyl torsional modes of the −d0 compound was carried out using a semi-rigid model, and the resulting potential function obtained is V30 = 1685 ± 12 cm−1 (4.82 ± 0.04 kcal mol−1); V03 = 1827 ± 16 cm−1 (5.22 ± 0.05 kcal mol−1); V60 = −92±5cm−1 (−0.26 ± 0.02 kcal mol−1); V06 = −41 ± 6cm−1 (−0.12 ± 0.02 kcal mol−1) and V33 = −51 ± 5 cm−1 (−0.15 ± 0.01 kcal mol−1). Ab initio gradient calculations were carried out employing the 3–21G and 6–31G* basis sets, as well as the 6–31G* basis set with electron correlation at the MP2 level. The structural parameters, conformational stability, and three-fold barriers to internal rotation have been determined and the gauche conformer is calculated to be more stable than the trans form by 783 cm−1 (2.24 kcal mol−1) with the MP2/6–31G* basis set. These calculations were also used to re-evaluate the previously reported assignment of the fundamental modes, and to obtain a potential function for the asymmetric torsion. All of these results are discussed and compared with corresponding quantities for some similar compounds.  相似文献   

4.
The infrared (3500-20 cm−1) and Raman (3200-10 cm−1) spectra have been recorded for gaseous and solid fluoroacetone (1-fluoro-2-propanone), CH2FC(O)CH3. Additionally, the Raman spectrum of the liquid has been recorded and qualitative depolarization values have been obtained. These data have been interpreted on the basis that the molecule exists predominantly in the cis (fluorine atom oriented cis to the methyl group) conformation in the vapor but for the liquid a second conformer having a trans orientation (fluorine atom oriented trans to the methyl group) is present. From a study of the Raman spectrum of the liquid at variable temperatures the trans conformation has been determined to be more stable than the cis form by 416 ± 54 cm−1 (1.19 ± 0.15 kcal mol−1) and is the only conformation present in the spectrum of the annealed solid. The asymmetric torsional fundamental for the more stable cis conformer has been observed in the far infrared spectrum of the gas at 69.6 cm−1 with six accompanying hot band transitions proceeding to lower frequency. The corresponding mode for the high energy trans conformer is extensively overlapped but is distinguishable at ∼65 cm−1. From these data the asymmetric torsional potential function governing internal rotation about the CC bond has been determined and the potential coefficients are: V1 = 675 ± 2, V2 = 991 ± 5, V3 = 74 ± 1 and V4 = 54 ± 2 cm−1. The cis to trans and trans to cis barriers are 1332 ± 5 and 731 ± 5 cm−1, respectively, with an enthalpy difference of 601 ± 8 cm−1 (1.72 ± 0.02 kcal mol−1). From ab initio calculations at the 3-21G and 6-31G* basis set levels optimized geometries for both the cis and trans conformers have been obtained and the potential surface governing internal rotation of the asymmetric top determined. The observed vibrational frequencies with their assignments for both the cis and trans conformers are compared to those from the ab initio calculations. All of these results are compared to the corresponding quantities for some similar molecules.  相似文献   

5.
The i.r. (4000-40 cm−1) and Raman (4000-10 cm−1) spectra of gaseous, liquid and solid methoxy difluorophosphinoxide, CH3OP(O)F2, and the deuterated analog have been recorded. Results obtained from variable solvent and matrix isolation studies are consistent with the existence of both trans (CO bond trans to the PO bond) and gauche (dihedral angle approximately 120° from the trans form) conformers in the fluid phases. From simulations of observed gas phase i.r. band profiles, it was possible for assignments to be made to the individual conformers for a number of the fundamentals. Variable temperature studies carried out for the gaseous and liquid phases give energy differences between the gauche and trans conformers of 451 ± 100 cm−1 (1.29 ± 0.3 kcal/mol) and 69 ± 20 cm−1 (197 ± 57 cal/mol), respectively. Furthermore, these data are consistent with the gauche form being the thermodynamically preferred conformer for the gas phase whereas the trans conformer is preferred in the liquid phase and the only conformer present in the annealed solid. The methoxy torsional mode of the gauche conformer has been assigned to a very strong band observed in the far i.r. spectrum of the gas phase at 42 cm−1. The matrix isolation spectra of the normal compound in Ar, CO and N2 matrices indicated no changes in the conformational equilibrium among these different matrices and this equilibrium remains unchanged upon annealing the matrices.  相似文献   

6.
7.
The infrared (3500-20 cm−1) and Raman (3200-10 cm−1) spectra have been recorded for gaseous and solid chloroacetone (1-chloro-2-propanone), CH2ClC(O)CH3. Additionally, the Raman spectrum of the liquid has been recorded and qualitative depolarization values have been obtained. These data have been interpreted on the basis that the molecule exists predominantly in a gauche conformation having a “near cis” structure of C1 symmetry (dih ClCCO=142°C) in the vapor but for the liquid a second conformer having a trans structure (chlorine atom oriented trans to the methyl group) with Cs point group symmetry is present. From a study of the Raman spectrum of the liquid at variable temperatures, the trans conformation has been determined to be more stable than the gauche form by 1042±203 cm−1 (2.98±0.6 kcal mol−1 and is the only conformer present in the spectrum of the annealed solid. From ab initio calculations at the 3-21G* and 6-31G* basis set levels optimized geometries for both the gauche and trans conformers have been obtained and the potential surfaces governing internal rotation of the symmetric and asymmetric rotors have been obtained. The observed vibrational frequencies and assignments to the fundamental vibrations for both the gauche and trans conformers are compared to those calculated with the 3-21G* basis set. The results are discussed and compared with the corresponding quantities obtained for some similar molecules.  相似文献   

8.
The infrared (3500 to 40 cm−1) and Raman (3500 to 10 cm−1) spectra have been recorded for the gaseous and solid phases of ethyldichlorophosphine, CH3CH2PCl2, and CD3CD2PCl2. Additionally, the Raman spectra of the liquids were recorded and qualitative depolarization values were obtained. In the spectrum of the gas the gauche conformer is predominant with about 65% abundance whereas in the spectrum of the liquid at ambient temperature the amount of gauche conformer is reduced compared to the gas phase and at −100°C the trans conformer predominates. The trans conformer is the more stable species in the solid. A variable temperature study was carried out on the Raman spectrum of the liquid and ΔH and ΔS values of 190 ± 30 cm−1 (543 ± 87 cal/mol) and 2.86 ± 0.3 eu were determined, respectively, with the trans conformer being more stable. Similar variable temperature studies have been carried out on a number of conformer peaks in the infrared spectrum of the gas and a ΔH value of 53 ± 38 cm−1 (152 ± 110 cal/mol) was obtained, again with the trans conformer being more stable. All the fundamental modes of both conformers have been assigned utilizing band contours, depolarization values, isotopic shift factors and group frequencies. A normal coordinate calculation has been carried out utilizing a modified valence force field to calculate the frequencies and potential energy distribution for both conformers. The barriers to methyl rotation of the trans and gauche conformers are 2.2 ± 0.1 and 2.3 ± 0.1 kcal/mol, respectively. These results are compared to similar quantities for some corresponding molecules.  相似文献   

9.
The microwave spectrum of trans-1-fluoro-2-butene, trans-(CH3)HCCH(CH2F), has been recorded in the region of 18.0–39.0 GHz. Both a-type R- and b-type Q-branch assignments have been made for the ground and first two vibrationally excited states of the asymmetric torsion for the gauche (anticlinal) conformer. The ground state rotational constants for this conformer are found to have the following values: A = 19,938.33±0.48, B = 2071.37±0.01, C = 2022.17±0.01 MHz. From an analysis of the internal rotational splittings of the Q-branches, the three-fold rotational barrier for the methyl group is determined to be 596±7 cm−1 (1.70±0.02 kcal/mol). From the Stark effect the dipole moment components for the gauche conformer were determined to be |μa| = 1.86±0.01, |μb| = 1.16±0.01, |μc| = 0.31±0.05, and |μt = 2.21±0.01 D. The fundamental asymmetric torsion for the cis (synclinal) conformer has been observed in the far-IR spectrum of the vapor at 123.95 cm−1 whereas that for the gauche conformer has been determined to occur at 82.8±5 cm−1 based on relative intensity measurements obtained from the microwave spectrum. From these data the potential function which governs the internal rotation of the asymmetric top has been determined and the following potential constants have been evaluated: V1 = −191±10, V2 = 598±10, V3 = 786±13, V4 = 59±5, and V6 = 79±5 cm−1. These data are consistent with the more stable conformer having the fluorine atom cis (synclinal) to the double bond and lying 300±33 cm−1 (858±94 cal/mol) lower in energy than the gauche rotamer. Utilizing ab initio calculations with the MP2/6-31G* basis set and the three rotational constants, r0 structural parameters are estimated. Also, the barriers to conformer interconversion have been calculated with the RHF/3-21G, RHF/6-31G*, and MP2/6-31G* basis sets. All of these results have been compared to the similar quantities of some corresponding molecules.  相似文献   

10.
The IR (50–3500 cm?1) and Raman (20–3500 cm?1) spectra have been recorded for gaseous and solid dimethylethylamine. Additionally, the Raman spectrum of the liquid has been recorded and qualitative depolarization values have been obtained. Due to the fact that three distinct Raman lines disappear on going from the fluid phases to the solid state, it is concluded that the molecule exists as a mixture of the gauche and trans conformers in the fluid phases with the gauche conformer being more stable and the only one present in the spectra of the unannealed solid. From the temperature study of the Raman spectrum of the liquid a rough estimate of 3.9 kcal mol?1 has been obtained for ΔH. Relying mainly on group frequencies and relative intensities of the IR and Raman lines, a complete vibrational assignment is proposed for the gauche conformer. The potential functions for the three methyl rotors have been obtained, and the barriers to internal rotation for the two CH3 rotors attached to the nitrogen atom have been calculated to be 3.51 and 3.43 kcal mol?1, whereas the barrier for the CH3 rotor of the ethyl group has been calculated to be 3.71 kcal mol?1. The asymmetric torsional mode for the gauche conformer has been observed in both the IR and Raman spectra of the gas at 105 cm?1 with at least one hot band at a lower frequency. Since the corresponding mode has not been observed for the trans conformer, it is not possible to obtain the potential function for the asymmetric rotation although estimates on the magnitudes of some of the terms have been made. Significant changes occur in the low-frequency IR and Raman spectra of the solid with repeated annealing; several possible reasons for these changes are discussed and one possible explanation is that a conformational change is taking place in the solid where the trans form is stabilized by crystal packing forces. These results are compared to the corresponding quantities for some similar amines.  相似文献   

11.
The infrared spectra of gaseous and solid tertiary-butylphosphine, [(CH3)3CPH2], have been recorded from 50 cm?1 to 3500 cm?1. The Raman spectra of gaseous, liquid and solid (CH3)3CPH2 have been recorded from 10 to 3500 cm?1. A vibrational assignment of the 42 normal modes has been made. A harmonic approximation of the methyl torsional barrier from observed transitions in the solid state gave a result of 4.22 kcal mol?1 and 3.81 kcal mol?1 in the gaseous state. Hot band transitions for the phosphino torsional mode have been observed. The potential function for internal rotation about the C-P bond has been calculated. The two potential constants were determined to be: V3 = 2.79 ± 0.01 kcal mol?1 and V6 = 0.07 ± 0.01 kcal mol?1.  相似文献   

12.
The vibrational spectra of ethyl vinyl ether in both the fluid and solid states have been recorded from 20 to 3500 cm?1. The 33 fundamental modes of vibration have been assigned. Three rotational isomers have been observed and their structures have been determined. The most stable conformer, s-cis/s-trans, is planar and of Cs symmetry. The two less stable rotamers, skew/s-trans and skew/gauche, are non-planar and of Ci molecular symmetry. The barrier to internal rotation of the methyl rotor has been determined for each conformation; these barriers are 3.43 kcal mol?1 (s-cis/s-trans), 3.35 kcal mol?1 (skew/s-trans) and 3.19 kcal mol?1 (skew/gauche). A potential function for each of the two asymmetric internal rotations has been calculated and barriers to conformer interconversion have been determined. From the asymmetric potential function calculations, ΔH, the enthalpy difference between the conformers, has been determined. The s-cis/s-trans conformer is 1.87 kcal mol?1 more stable than the skew/s-trans conformer; the skew/s-trans conformer is more stable than the skew/gauche conformer by 1.10 kcal mol?1. The energetics of conformer interconversion and methyl internal rotation have been described in terms of molecular geometry and non-bonded interactions. These results are compared to those found in other alkyl vinyl and dialkyl ethers.  相似文献   

13.
The infrared spectra of the cis and gauche conformers of 3-fluoropropene, CH2CHCH2F, were studied in Ne, Ar, Kr and Xe matrices. An infrared-induced cis to gauche rotamerization was found in Ar, Kr and Xe matrices. A thermal interconversion process was also found. Its direction was dependent upon the host, being the same as that of the IR process in Kr but reverse in Ar and Xe. In Ar and Xe matrices considerable site-splitting occurs in the IR spectra and a detailed analysis of the processes in different sites is given. An energy difference of 2.5±0.3 kJ mol−1 between the cis and gauche species was obtained on assuming that the gas phase equilibrium between the conformers is trapped upon deposition. A slow dark process from cis to gauche conformer was observed in Kr matrices at temperatures above 15 K, possibly due to tunnelling. Ab initio calculations were carried out on 3-fluoropropene. The torsional potential energy curve and spectra of the conformers were calculated at the MP2(full)16-31G** level and were compared with the experimental results.  相似文献   

14.
The far infrared spectrum [350 to 25 cm–1] of gaseous chloroacetaldehyde, ClCH2CHO, has been recorded at a resolution of 0.10 cm–1. The first excited-state transition of the asymmetric torsion of the more stable near s-cis [chlorine atom s-cis to the aldehyde hydrogen atom] conformer has been observed at 26.9 cm–1, with seven additional upper state transitions falling to higher frequency. Additionally, the fundamental torsional transition of the s-trans conformer has been observed at 58.9 cm–1 with two excited states also falling to higher frequency. From these data, the asymmetric torsional potential coefficients have been determined to be:V 1=414±11;V 2 = 191±3;V 3=–203±5;V 4=44±1 andV 6=–26±1 cm–1. The s-cis to s-trans barrier is 500±5 cm–1 (1.43±0.01 kcal mol–1) with the s-cis conformer being more stable by 267±19 cm–1 (0.76±0.05 kcal mol–1) than the s-trans form. The Raman [4000 to 100 cm–1] and infrared (4000 to 400 cm–1] spectra of the gas have been recorded. Additionally, the Raman spectrum of the liquid has been recorded and qualitative depolarization values obtained. Complete vibrational assignments are proposed for both conformers based on band contours, depolarization values, and group frequencies. The assignments are supported by ab initio Hartree-Fock gradient calculations employing the 3–21G* basis set to obtain the frequencies and the potential energy distributions for the normal vibrations for both rotamers. Additional ab initio calculations at the MP4/6-31G* level have been carried out to determine the structural parameters for both conformers. The results are discussed and compared with the corresponding quantities obtained for some similar molecules.This contribution taken in part from the thesis of C. L. Tolley which will be submitted to the Department of Chemistry in partial fulfillment of the Ph.D. degree.  相似文献   

15.
The Raman spectra (3200–10 cm−1) of ethyl methyl selenide in the gas, liquid and solid phases and the infrared spectra (3200–30 cm−1) of the gas and solid have been recorded. Qualitative depolarization ratios have been obtained for the lines in the Raman spectrum of the liquid. By a variable temperature Raman study of the liquid, it has been determined that the gauche conformer is more stable than the trans rotamer by 158±16 cm−1 (452±46 cal mol−1), and the gauche conformer is the rotamer present in the solid. A complete vibrational assignment for the gauche conformer is presented. All of these data are compared to the corresponding quantities obtained from ab initio Hartree—Fock gradient calculations employing the STO-3G* and 4–31G*/MIDI-4* basis sets. Complete equilibrium geometries have been calculated for both rotamers and the results are discussed and compared with the corresponding quantities for some similar molecules.  相似文献   

16.
The Raman spectrum of gaseous cyclobutanol has been recorded and the far infrared spectrum of the gas has been obtained at a resolution of 0.5 cm?1. At least six Q-branches arising from the low frequency ring-puckering motion have been observed and assigned on the basis of a potential of the form V(X) = (6.32 ± 0.21) × 105X4?(4.18 ± 0.04) × 104X2+ (8.81 ± 1.20) × 103X3 with a reduced mass of 170 amu. An energy difference between the equatorial and axial forms was found to be 50–150 cm?1 with the equatorial being more stable and a barrier of 700–900 cm?1 was found for the interconversion. Three O-H stretching modes were observed in the Raman spectrum. It is concluded that the O-H moiety has both the gauche and trans conformations present in the equatorial form but only the gauche conformer is present in the axial form of the ring. Three O-H torsional modes were observed at 244 (trans conformer), 226.5 and 181.5 cm?1 (gauche conformer) for the equatorial form and one O-H torsion at 237.5 cm?1 (gauche conformer) for the axial form. The potential function governing the O-H torsional motion for the equatorial form was found to be V1 = 280 ± 7 cm?1 (800 cal mole?1) and V3 = 425 ± 3 cm? (121.5 cal mole?1) with the trans conformer being more stable than the gauche by approximately 206 cm?1 (589 cal mole?). The barriers to trans-gauche and gauche-gauche interconversion have essentially the same values, 500 cm?1 (1430 cal mole?1).  相似文献   

17.
The Raman (3500-10 cm−1) and infrared (3500-50 cm−1) spectra of solid ethyldichlorophosphine-borane, CH3CH2P(BH3)Cl2 and its deuterated analog, CH3CH2P(BD3)Cl2 have been recorded. Additionally, the infrared spectra of the gases and the Raman spectra of the liquids have been recorded and qualitative depolarization ratios have been obtained. Based on the fact that several distinct Raman lines disappear on going from the liquid to the solid state, it is concluded that the molecule exists as a mixture of the gauche and trans conformers, with the trans conformer being more stable in the liquid phase, and the only one present in the solid phase. From a temperature study of the Raman spectrum of the liquid, the enthalpy difference between the gauche and trans conformers was determined to be nearly zero. Based on Raman depolarization data, group frequencies, isotopic shift factors and infrared band contours, a complete vibrational assignment has been proposed for the trans conformer. The assignment is supported by a normal coordinate calculation which was carried out utilizing a modified valence force field to obtain the frequencies of the normal modes and the potential energy distribution. The BH3 torsion has been observed at 188 cm−1, while the BD3 torsion was not observed. The methyl torsions in the spectra of the solids have been observed at 209 and 202 cm−1 for the “light” and deuterated species, respectively. From the torsional data, barriers to internal rotation have been calculated. The asymmetric torsional mode has been observed for the trans conformer in the infrared spectra of the gas phase at 108 and 104 cm−1 for the BH3 and BD3 species, respectively. These results are compared with similar quantities for some corresponding organophosphine—borane compounds.  相似文献   

18.
The far infrared spectrum (375 to 30 cm–1) of gaseous 2-chloro-3-fluoropropene, CH2=C(CH2F)CI, has been recorded at a resolution of 0.10 cm–1. The fundamental asymmetric torsional mode is observed at 117.5 cm–1 with ten excited states falling to low frequency for thes-cis (fluorine atom eclipsing the double bond) conformer. For the higher energy gauche conformer, the asymmetric torsion is estimated to be at 94 cm–1. From these data the asymmetric torsional potential function has been calculated. The potential function coefficients are calculated to be in cm–1):V 1=803±21,V 2=–94±21,V 3= 1025±10,V 4=95±10, andV 6=2±1, with an enthalpy difference between the more stables-cis and gauche conformera of 550±100 cm–1 (1.57±0.29 kcal/mol). This function gives values of 1227±50cm–1(3.51±0.14kcal/mol), 1266±200 cm–1 (3.62±0.57 kcal/mol), and 665±100 cm–1 (1.90±0.29 kcal/mol), for thes-cis to gauche, gauche to gauche, and gauche tos-cis barriers, respectively. From the relative intensities of the Raman lines of the gas at 652 cm–1 (gauche) and 731 cm–1 (s-cis) as a function temperature, the enthalpy difference is found to be 565±96 cm–1 (1.62±0.27 kcal/mol). However, the more polar gauche conformer remains in the crystalline solid. The Raman spectrum of the gas has been recorded from 3500 to 70 cm–1 and, utilizing these data and the previously reported infrared data, a complete vibrational analysis is proposed for both conformers. The conformational stability, barriers to internal rotation, fundamental vibrational frequencies, and structural parameters that have been determined experimentally are compared to those obtained from ab initio Hartree-Fock gradient calculations employing both the 3–21 G* and 6–31G* basis sets and to the corresponding quantities for some similar molecules.  相似文献   

19.
《Vibrational Spectroscopy》2001,25(2):151-161
Variable temperature (−55 to −150°C) studies of the infrared spectra (3500–400 cm−1) of methyl vinyl difluorosilane, CH2CHSiF2CH3, dissolved in liquid xenon and krypton have been recorded. Utilizing three sets of conformer doublets due to the cis and gauche rotamers from the krypton solution and two pairs from the xenon solution, the enthalpy difference has been determined to be 67±7 cm−1 (0.80±0.09 kJ/mol) and 83±11 cm−1 (0.99±0.14 kJ/mol), respectively, with the gauche conformer the more stable form. However, in the crystalline solid only the cis conformer is present. Ab initio calculations have been carried out with several different basis sets up to MP2/6-311+G(2d,2p) with full electron correlation by the perturbation method from which the conformational stabilities have been determined. With the largest basis set MP2/6-311+G(2d,2p), the cis conformer is predicted to be the more stable conformer by 10 cm−1 which is inconsistent with the experimental results; however, this value is so small that the ab initio prediction cannot be relied on to give the correct conformer stability. The spectroscopic and theoretical results are compared to the corresponding quantities for some similar molecules.  相似文献   

20.
The far i.r. (400-50 cm−1) spectra of gaseous and solid furfural (2-furancarboxaldehyde), c-C4H3O (CHO), have been recorded. Additionally, the Raman (3500-20 cm−1) spectra of the gas and liquid have been obtained at variable temperatures and the spectrum of the solid at 25 K. These data have been interpreted on the basis that the molecule exists in two different conformations in the fluid states and that the conformation which has the two oxygen atoms oriented in a trans configuration, OO-trans, is most stable (ΔH ⩽ 1 kcal/mol) in the gas; however, the conformation which has the two oxygen atoms oriented cis, OO-cis, is preferred in the liquid (ΔH = 1.07 ± 0.03 kcal/mol) and is the only rotamer present in the spectra of the solid. The asymmetric torsional fundamental for the OO-trans rotamer has been observed at 146.25 cm−1 in the far i.r. spectrum of the vapor and has five accompanying “hot bands”. The corresponding fundamental for the OO-cis rotamer has been observed at 127.86 cm−1 along with a “hot band” which occurs at 127.46 cm−1. From these data a cosine-based potential function governing internal rotation of the CHO top has been determined and the potential coefficients have values of V1 = 173 ± 2, V2 = 3112 ± 20, V3 = 113 ± 2 and V4 = −198 ± 6 cm−1. This potential is consistent with an enthalpy difference between the more stable OO-trans and high energy OO-cis conformers being 286 ± 24 cm−1 (818 ± 67 cal/mol) and a trans to cis barrier height of 3255 ± 20 cm−1 (9.31 ± 0.06 kcal/mol). These results are compared to the corresponding quantities obtained previously from microwave spectroscopy and theoretical methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号