首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The pore structure of nine polymers of different origin initial and treated in water and acetone for 24 h and then frozen by liquid nitrogen for 2 h was studied using low-temperature nitrogen adsorption. An average increase in pore volume and surface area is approximately 16 and 8%, respectively, after freezing with water and 19 and 8%, respectively, after treatment with acetone. However, for some samples, this effect is negative but for others, structural changes are significantly greater (up to 106%) than the average one. Certain treated polymers are characterized by shifted pore size distribution which is also accompanied by displacement of nitrogen adsorption energy distribution.  相似文献   

2.
Nuclear magnetic resonance water proton relaxometry is widely used to investigate pore size distributions and pore connectivity in brine-saturated porous rocks and construction materials. In this paper we show that, by replacing water with acetone, a similar method can be used to probe the porous structure of freeze-dried starch gels and therefore the ice crystal size distribution in frozen starch gels. The method relies on the observation that the starch surface acts as a powerful relaxation sink for acetone proton transverse magnetization so that Brownstein-Tarr theory can be used to extract the pore size distribution from the relaxation data. In addition the relaxation time distribution is found to depend on the spectrometer frequency and the Carr-Purcell-Meiboom-Gill pulse spacing, consistent with the existence of large susceptibility-induced field gradients within the pores. The potential of this approach for noninvasively measuring ice crystal size distributions during freezing and pore size distributions during freeze-drying in other food systems is discussed.  相似文献   

3.
The bioavailability of water for plant nutrition in natural soils is controlled by the pore system structure and the interaction of water with the pore walls at variable degrees of saturation. For the characterization of these processes T 1 relaxometry is particularly suitable because it is not influenced by internal gradients and the frequency dependence of T 1 includes detailed information about the local dynamics at the pore walls. Using Fast Field Cycling Relaxometry, we have determined T 1 relaxation dispersion curves of unsaturated soil materials which cover a broad range of textures between pure sand and silt-loam. The mean relaxation rates scale inversely with the water content, as expected according to the Brownstein–Tarr model, which means that the effective pore volume is the only water-contributing fraction. By further analysis of the relaxation dispersion curves we find a bi-logarithmic behavior which is describable by a model of two-dimensional diffusion at the liquid–solid interface in the neighborhood of paramagnetic impurities at the surface. The microscopic wettability, as expressed by the ratio of surface residence time and correlation time, is identical for the soil material but decreases by a factor of two for the sand. This relaxation mechanism is unique for all textures and water contents and proves that the water mobility at the surface does not decrease even at the lowest water contents.  相似文献   

4.
Freezing of water in hydrophilic nanopores (D=1.2 nm) is probed at the microscopic scale using x-ray diffraction, Raman spectroscopy, and molecular simulation. A freezing scenario, which has not been observed previously, is reported; while the pore surface induces orientational order of water in contact with it, water does not crystallize at temperatures as low as 173?K. Crystallization at the surface is suppressed as the number of hydrogen bonds formed is insufficient (even when including hydrogen bonds with the surface), while crystallization in the pore center is hindered as the curvature prevents the formation of a network of tetrahedrally coordinated molecules. This sheds light on the concept of an ubiquitous unfreezable water layer by showing that the latter has a rigid (i.e., glassy) liquidlike structure, but can exhibit orientational order.  相似文献   

5.
The effect of ultrasonic-assisted freezing (UAF) on the water distribution of dough and molecular structure of gluten was in-situ monitored by low field nuclear magnetic resonance (LF-NMR) and micro-miniature Raman spectroscopy in this research. The results showed that UAF treatment increased the bound water content between 5 min and 30 min, and weakened the signal intensity of hydrogen protons due to the ultrasound enhanced heat and mass transfer during the freezing process. In-situ Raman spectra analysis indicated that UAF delayed the transition from embedded to exposure of tyrosine and tryptophan residues during the freezing process. Meanwhile, UAF reduced the number of hydrogen bonds, gauche-gauche-gauche (g-g-g) conformation breakage, the degree of α-helix to random coil conversion and damage to the gluten network during the freezing process. UAF treatment reduced the water mobility and breakage of non-covalent bonds, which prevented a dramatic shift in the protein advanced conformation during the freezing process, thereby improving the quality of frozen dough.  相似文献   

6.
Both direct and indirect methods for determining soil–water characteristic curves rely on determination of some empirical coefficients, which may not necessarily represent real microscopic mechanisms. Proton nuclear magnetic resonance (NMR) is a powerful tool for investigating water content and their interaction with solid particles in porous media. The NMR technique is widely used in food science and petroleum. In the present study, proton NMR spin–spin relaxation time (T 2) distribution measurement is integrated with a Tempe apparatus to characterize the hydraulic processes of unsaturated soils, shedding insights into the microscopic mechanisms of pore water distribution and migration in the soil during hydraulic cycles. It is revealed that during a drying process the drainage of pore water occurs sequentially from larger pores to smaller pores, whereas in a wetting process the water invades into the soil sequentially from smaller pores to larger pores. A new procedure is developed which can be used to determine the pore size distribution of the soil based on the NMR T 2 distribution measurements; compared to the traditional methods, the new method is rapid and non-destructive. The new procedure is validated by comparing the new result with the measurement of the mercury intrusion porosimetry.  相似文献   

7.
王飞  黄益旺  孙启航 《物理学报》2017,66(19):194302-194302
由于有机物质分解等原因,实际的海底沉积物中存在气泡,气泡的存在会显著影响沉积物低频段的声学特性,因此研究气泡对沉积物低频段声速的影响机理具有重要意义.考虑到外场环境的不可控性,在室内水池中搭建了大尺度含气非饱和沙质沉积物声学特性获取平台,在有界空间中应用多水听器反演方法首次获取了含气非饱和沙质沉积物300—3000 Hz频段内的声速数据(79—142 m/s),并同时利用双水听器法获取了同一频段的数据(112—121 m/s).在声波频率远低于沉积物中最大气泡的共振频率时,根据等效介质理论,将孔隙水和气泡等效为一种均匀流体,改进了水饱和等效密度流体近似模型.模型揭示了气泡对沉积物低频段声学特性的影响规律,理论上解释了沉积物中声速的降低.通过分析模型预报声速对模型参数的敏感性,根据测量得到的声速分布反演得到了沉积物不同区域的气泡体积分数,气泡体积分数从1.07%变化到2.81%.改进的模型为沉积物中气泡体积分数估计提供了一种新方法.  相似文献   

8.
In this paper, it is shown how free induction decay signals recorded in the Earth’s magnetic field from water protons confined in porous media can be used to derive transversal relaxation times (T 2) and their distributions. After T 2 determination of six sintered glass samples with various pore sizes, the common theoretical model can be fitted to the data set. The T 2 distribution of water protons in a bimodal porous system is analyzed and compared to mercury porosimetry results. The implications for the calculation of pore sizes and pore size distributions of porous media by this method are discussed.  相似文献   

9.
The two-dimensional Ausloos et al. model of fluid invasion, freezing and thawing in a porous medium is elaborated upon and investigated in order to take into account the pore volume redistribution and conservation during freezing. The results are qualitatively different from previous work, since the damaged pore sizes are found to be much less than the possible maximum value and is reached after a large number of invasion-freezing-thawing cycles, e.g. the material is “slowly damaged”. The pore size distribution is thus found in better agreement with expected practical findings. The successive invasion percolation clusters are still found to be self-avoiding with aging. The cluster size decreases with a power law as a function of invasion-frost-thaw iterations. The aging kinetics is also discussed through the normalized totally invaded pore volume. Received 24 September 1999 and Received in final form 5 January 2000  相似文献   

10.
Lime-mortars to be used in restoration works of Cultural Heritage are being more and more studied. The knowledge on the lime-pastes allows understanding the behaviour of the binder fraction. The aim of this work is to study the influence of the kneading water on two critical aspects of the lime-pastes: pore structure and capillary porosity, because both of them are related to the service life of the material, particularly with the moisture transport. Mercury intrusion porosimetry has been performed to establish the pore size distribution: one pore range has been checked in the different pastes tested, setting linear relationships between the pore diameter and the water/lime ratio.Fractal geometry has been used from the MIP results in order to evaluate the pore surface complexity, as a function of the kneading water. From the results, it can be concluded that kneading water is only responsible for a swelling of the structure, but it does not change the pore surface (keeping constant the surface fractal dimension). DIA analysis has been carried out, confirming the previous results. Finally, the correlation obtained between the capillary coefficient and the water/lime ratio confirms the postulated pore structure for the different amount of kneading water in lime-pastes.  相似文献   

11.
均质形核结冰随机性及形核率的研究   总被引:6,自引:0,他引:6       下载免费PDF全文
曲凯阳  江亿 《物理学报》2000,49(11):2214-2219
从Stanley和Teixeira提出的水的微观结构连续模型出发推导了过冷水均质形核结冰概率与过冷水体积、时间和温度的关系,计算了过冷水均质形核率.计算避免了经典形核理论和密度函数法中对指前因子的求解,计算结果与实验结果符合较好. 关键词: 过冷水结冰 均质形核 形核率  相似文献   

12.
What is 'unfreezable water', how unfreezable is it,and how much is there?   总被引:1,自引:0,他引:1  
Wolfe J  Bryant G  Koster KL 《Cryo letters》2002,23(3):157-166
Water that remains unfrozen at temperatures below the equilibrium bulk freezing temperature, in the presence of ice, is sometimes called unfreezable or bound. This paper analyses the phenomenon in terms of quantitative measurements of the hydration interaction among membranes or macromolecules at freezing temperatures. These results are related to analogous measurements in which osmotic stress or mechanical compression is used to equilibrate water of hydration with a bulk phase. The analysis provides formulas to estimate, at a given sub-freezing temperature, the amount of unfrozen water due to equilibrium hydration effects. Even at tens of degrees below freezing, this hydration effect alone can explain an unfrozen water volume that considerably exceeds that of a single 'hydration shell' surrounding the hydrophilic surfaces. The formulas provided give a lower bound to the amount of unfrozen water for two reasons. First, the well-known freezing point depression due to small solutes is, to zeroth order, independent of the membrane or macromolecular hydration effect. Further, the unfrozen solution found between membranes or macromolecules at freezing temperatures has high viscosity and small dimensions. This means that dehydration of such systems, especially at freezing temperatures, takes so long that equilibrium is rarely achieved over normal experimental time scales. So, in many cases, the amount of unfrozen water exceeds that expected at equilibrium, which in turn usually exceeds that calculated for a single hydration shell.  相似文献   

13.
The diffusion coefficient, measured at long observation times by pulsed-held-gradient NMR, can in principle be used to estimate the tortuosity of a porous medium. This method is useful for glass-sphere packs, but we find that it does not generally work for porous sedimentary rock. Natural sedimentary rocks are characterized by complex microgeometries and broad distributions of pore sizes, which cannot be adequately sampled by diffusing molecules in experimentally accessible observation times. The time-dependent diffusion coefficient D(t) can be distinctly irregular for rocks with very large pores. In heterogeneous porous media, determination of pore-size distribution by relaxation-time measurements and tortuosity by PFG diffusion measurements are mutually exclusive.  相似文献   

14.
Structural characterisation of such bio-objects as fibrinogen solution, yeast cells, wheat seeds and bone tissues has been done using two versions of cryoporometry based on the integral Gibbs-Thomson (IGT) equation for freezing point depression of pore liquids and the measurements by 1H NMR spectroscopy (180-200 < T < 273 K) and the thermally stimulated depolarisation current (TSDC) method (90 < T < 273 K) of structured water. The IGT equation was solved using a self-consisting regularization procedure including the maximum entropy principle applied to the distribution function of pore size (PSD). Both methods give clear pictures of changes in the structural characteristics caused, e.g., by hydration and swelling of wheat seeds and yeast cells, coagulation and interaction of fibrinogen with solid nanoparticles in the aqueous media, and the human bone tissue disease.  相似文献   

15.
Shrinkage microporosity in cast aluminum was characterized utilizing the frequency dependence of ultrasonic attenuation caused by scattering from the pores. Measurements were made with the plate specimen immersed in water, and, by using a focused transducer, spatial resolution of about 2 mm was obtained. An accurate measure of attenuation was obtained by comparing the specimen’s ultrasonic signal with that from a pore-free reference specimen. Although the attenuation could be fitted using a single spherical pore size, better fits were obtained by assuming a lognormal distribution of spheres. Pore volume fraction inferred from the lognormal fits overestimates the actual volume fraction, determined from density measurements, by the same factor for all volume fractions. The actual volume fraction is overestimated by more than 100%, due to the complicated, nonspherical pore shapes, and must be taken into account to obtain accurate values of porosity. The strong correlation (r2=0.97) between ultrasonic and density-derived volume fractions permits reliable, nondestructive laboratory measurements of porosity.  相似文献   

16.
17.
Qian Xu  Jianchao Cai 《Physics letters. A》2009,373(22):1978-1982
The effective dielectric constant of porous ultra low-k dielectrics is simulated by applying the fractal geometry and Monte Carlo technique in this work. Based on the fractal character of pore size distribution in porous media, the probability models for pore diameter and for effective dielectric constant are derived. The proposed model for the effective dielectric constant is expressed as a function of the dielectric coefficient of base medium and the volume fractions of pores and base medium, fractal dimension for pores, the pore size, as well as random number. The Monte Carlo simulations combined with the fractal geometry are performed. The predictions by the present simulations are shown in good accord with the available experimental data. The proposed technique may have the potential in analyzing other properties such as electrical conductivity and thermal conductivity in porous ultra low-k dielectrics.  相似文献   

18.
A heuristic method is proposed to estimate a posteriori that part of the total discretization error which is attributable to the smoothing effect of added dissipation, for finite volume discretizations of the Euler equations. This is achieved by observing variation in a functional of the solution as the level of dissipation is varied, and it is deduced for certain test-cases that the dissipation alone accounts for the majority of the functional error. Based on this result an error estimator and mesh adaptation indicator is proposed for functionals, relying on the solution of an adjoint problem. The scheme is considerably implementationally simpler and computationally cheaper than other recently proposed a posteriori error estimators for finite volume schemes, but does not account for all sources of error. In mind of this, emphasis is placed on numerical evaluation of the performance of the indicator, and it is shown to be extremely effective in both estimating and reducing error for a range of 2d and 3d flows.  相似文献   

19.
董琪琪  胡海豹  陈少强  何强  鲍路瑶 《物理学报》2018,67(5):54702-054702
利用三维分子动力学模拟方法,研究了纳米尺度水滴撞击冷壁面的结冰过程.数值模拟中,统计系统采用微正则系综,势能函数选用TIP4P/ice模型,温度校正使用速度定标法,牛顿运动方程的求解采用文莱特算法,水滴内部结冰过程则通过统计垂直方向水分子温度分布来判定.研究发现,当冷壁面温度降低时,水滴完全结冰的时间减小,但水滴降至壁面温度的时间却增大;同时随着壁面亲水性降低,水滴内部热传递速度减慢(尤其是冷壁面与水滴底端分子层间),水滴内部温度趋于均匀,但水滴完全结冰时间延长.  相似文献   

20.
The phase transitions of non-polar organic fluids and of water, confined in the pores of porous silicon samples, were investigated by Differential Scanning Calorimetry (DSC). Two types of PS samples (p- and p+ type) with different pore size and morphology were used (with spherical pores with a radius of about 1.5 nm and cylindrical shape with a radius of about 4 nm respectively). The DSC results clearly show that the smaller the pores are, the larger is the decrease in the transition temperature. Moreover, a larger hysteresis between melting and freezing is observed for p+ type than for p- type samples. A critical review of the thermodynamical properties of small particles and confined fluids is presented and used to interpret and discuss our DSC results. The effects of the chemical dissolution as well as the influence of anodization time are presented, showing that thick p+ type porous silicon layers are non-homogeneous. The DSC technique which was used for the first time to investigate fluids confined in porous silicon, enables us to deduce original information, such as the pore size distribution, the decrease in the freezing temperature of confined water, and the thickness of non-freezing liquid layer at the pore wall surface. Received: 11 May 1998 / Revised and Accepted: 29 July 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号