首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
强化换热通道中扰流元场协同优化研究   总被引:1,自引:0,他引:1  
对一种场协同式周期性强化换热通道进行了数值模拟研究,考察了折流翅片不同角度、不同间距对通道换热特性的影响。计算结果表明,翅片倾角增大或间距缩小均有利于换热强化。强化效果随Re数的增大而愈加显著。  相似文献   

2.
三维内肋管内插入螺旋扭带的强化传热实验   总被引:4,自引:0,他引:4  
本文分别以水和乙二醇为工质,在Re数范围为:600~40000,Pr数范围为:5.5~110之间,对四根分别插入三种不同扭率螺旋扭带的三维内助管内的换热和流阻特性进行了实验研究。结果表明:三维内肋管内加装扭带的强化传热技术适用于低Re数下高Pr数工质的管内对流换热强化。根据实验值得到了流阻和换热关联式。  相似文献   

3.
Forced convection heat transfer from a helically coiled heat exchanger embedded in a packed bed of spherical glass particles was investigated experimentally. With dry air at ambient pressure and temperature as a flowing fluid, the effect of particle size, helically coiled heat exchanger diameter, and position was studied for a wide range of Reynolds numbers. It was found that the particle diameter, the helically coiled heat exchanger diameter and position, and the air velocity are of great influence on the convective heat transfer between the helically coiled heat exchanger and air. Results indicated that the heat transfer coefficient increased with increasing the air velocity, increasing helically coiled heat exchanger diameter, and decreasing the particle size. The highest heat transfer coefficients were obtained with the packed-bed particle size of 16 mm and heat exchanger coil diameter of 9.525 mm (1/4 inch) at a Reynolds number range of 1,536 to 4,134 for all used coil positions in the conducted tests. A dimensionless correlation was proposed for Nusselt number as a function of Reynolds number, particle size, coil size, and coil position.  相似文献   

4.
This article presents an experimental study of thermo-hydrodynamic phenomena in a microchannel heat exchanger system. The aim of this investigation is to develop correlations between flow/thermal characteristics in the manifolds and the heat transfer performance of the microchannel. A rectangular microchannel fabricated by a laser-machining technique with channel width and hydraulic diameter of 87 μm and 0.17 mm, respectively, and a trapezoidal-shaped manifold are used in this study. The heat sink is subjected to iso-flux heating condition with liquid convective cooling through the channels. The temporal and spatial evolutions of temperature as well as total pressure drop across the system are monitored using appropriate sensors. Data obtained from this study were used to establish relationships between parameters such as longitudinal wall conduction factor, residence and switching time, and thermal spreading resistance with Reynolds number. Result shows that there exist an optimum Reynolds number and conditions for the microchannel heat exchanger system to result in maximum heat transfer performance. The condition in which the inlet manifold temperature surpasses the exit fluid temperature results in lower junction temperature. It further shows that for a high Reynolds number, the longitudinal wall conduction parameter is greater than unity and that the fluid has sufficient dwelling time to absorb heat from the wall of the manifold, leading to high thermal performance.  相似文献   

5.
ABSTRACT

Present study investigates the heat transfer and friction characteristics of heat exchanger tube fitted with perforated twisted tape (PTT) insert having V cuts. A copper tube of 1 m length and 0.032 m inner diameter is used as test section to collect the experimental data by varying the twist ratio of PTT from 2 to 6 for the Reynolds number range of 2,700–23,400. V cuts are introduced in the PTT and the V-cut relative pitch ratio is varied from 1 to 2. The maximum thermo-hydraulic performance parameter is found to be 1.58.  相似文献   

6.
The present work is performed to study the effect of heat generation on fully developed flow and heat transfer of micropolar fluid between two parallel vertical plates. The rigid plates are assumed to exchange heat with an external fluid by convection. The governing equations are solved by using Crank–Nicolson implicit finite difference method. The effects of governing parameters such as transient, heat generation, micropolar parameter, Prandtl number, Biot number, and Reynolds number on the velocity and temperature profiles are discussed. It is found that the presence of heat generation enhances the velocity and temperature of the micropolar fluid at the middle of the channel.  相似文献   

7.
In this paper, we have investigated the motion of a heated viscoelastic fluid layer in a rectangular tank that is subjected to a horizontal periodic oscillation. The mathematical model of the current problem is communicated with the linearized Navier–Stokes equation of the viscoelastic fluid and heat equation together with the boundary conditions that are solved by means of Laplace transform. Time domain solutions are consequently computed by using Durbin's numerical inverse Laplace transform scheme. Various numerical results are provided and thereby illustrated graphically to show the effects of the physical parameters on the free-surface elevation time histories and heat distribution. The numerical applications revealed that increasing the Reynolds number as well as the relaxation time parameter leads to a wider range of variation of the free-surface elevation, especially for the short time history.  相似文献   

8.
The current study focuses on the numerical investigation of the mixed convective peristaltic mechanism through a vertical tube for non-zero Reynolds and wave number. In the set of constitutional equations, energy equation contains the term representing heat generation parameter. The problem is formulated by dropping the assumption of lubrication theory that turns the model mathematically into a system of the nonlinear partial differential equations. The results of the long wavelength in a creeping flow are deduced from the present analysis. Thus, the current study explores the neglected features of peristaltic heat flow in the mixed convective model by considering moderate values of Reynolds and wave numbers. The finite element based on Galerkin's weighted residual scheme is applied to solve the governing equations. The computed solution is presented in the form of contours of streamlines and isothermal lines, velocity and temperature profiles for variation of different involved parameters. The investigation shows that the strength of circulation for stream function increases by increasing the wave number and Reynolds number. Symmetric isotherms are reported for small values of time-mean flow. Linear behavior of pressure is noticed by vanishing inertial forces while the increase in pressure is observed by amplifying the Reynolds number.  相似文献   

9.
This article presents an investigation of heat transfer in a porous medium adjacent to a vertical plate. The porous medium is subjected to a magnetohydrodynamic effect and suction velocity. The governing equations are nondepersonalized and converted into ordinary differential equations. The resulting equations are solved with the help of the finite difference method. The impact of various parameters, such as the Prandtl number, Grashof number, permeability parameter, radiation parameter, Eckert number, viscous dissipation parameter, and magnetic parameter, on fluid flow characteristics inside the porous medium is discussed. Entropy generation in the medium is analyzed with respect to various parameters, including the Brinkman number and Reynolds number. It is noted that the velocity profile decreases in magnitude with respect to the Prandtl number, but increases with the radiation parameter. The Eckert number has a marginal effect on the velocity profile. An increased radiation effect leads to a reduced thermal gradient at the hot surface.  相似文献   

10.
This study has compared the convection heat transfer of Water-based fluid flow with that of Water-Copper oxide (CuO) nanofluid in a sinusoidal channel with a porous medium. The heat flux in the lower and upper walls has been assumed constant, and the flow has been assumed to be two-dimensional, steady, laminar, and incompressible. The governing equations include equations of continuity, momentum, and energy. The assumption of thermal equilibrium has been considered between the porous medium and the fluid. The effects of the parameters, Reynolds number and Darcy number on the thermal performance of the channel, have been investigated. The results of this study show that the presence of a porous medium in a channel, as well as adding nanoparticles to the base fluid, increases the Nusselt number and the convection heat transfer coefficient. Also the results show that As the Reynolds number increases, the temperature gradient increases. In addition, changes in this parameter are greater in the throat of the flow than in convex regions due to changes in the channel geometry. In addition, porous regions reduce the temperature difference, which in turn increases the convective heat transfer coefficient.  相似文献   

11.
In this present study, the forced convection heat transfer from aluminum foam heat sinks with 10, 20, 40 PPI pore density placed in a discrete form in a partially open cavity were experimentally investigated. Air was used as working fluid. The uniform heat flux was applied to 3 × 3 array of foam heat sinks horizontally mounted in the cavity. The experimental studies were performed for the 3363–9743 range of Reynolds number and the 2.7 x 106 and 7.5 x 106 range of modified Grashof number. The effects of the Reynolds number, the modified Grashof number and the pore density of foam heat sink on the heat transfer were investigated. The results obtained were compared with the results obtained without foam heat sink cases. In addition, the most heated elements within the cavity were identified and solution proposals were presented. In addition, the most heated elements within the cavity were identified and solution proposals were presented.  相似文献   

12.
方形空间内混合对流换热的数值研究   总被引:8,自引:1,他引:7  
以建筑物内人工环境控制为应用背景,对有对称空气射流的方形空间内混合对流换热进行了数值模拟,探讨了这种具有对称结构的混合对流换热解的分岔问题。数值结果表明,Reynolds数、强制通风气流的射流角度、以及方形空间的宽高比都会影响解的分岔。当Re数超过某一临界值时,会出现非对称数值解。宽高比减小,出现非对称解的临界Re数也随之减小。Re数、宽高比一定,仅当通风气流的射流角度在某个范围内时,能够得到非对称的数值解。  相似文献   

13.
A finned convergent-divergent plate-type cross-flow heat recovery unit is manufactured and tested for efficiency analysis. Temperature and pressure drop experiments are conducted with various working conditions of the boiler, fan, preheater, and reheater of the system. Variation of Nusselt number and friction factor with Reynolds number is analyzed. Variation of effectiveness and exergy loss with number of transfer units is calculated and discussed in terms of extant literature. Experimental results indicate that the most important parameter affecting the heat transfer is winglet geometry and fluid velocity. The efficiency can be improved successfully by controlling these parameters for thermal applications.  相似文献   

14.
为研究工业生产中应用的波纹换热管换热性能以及相关的影响因素,课题中应用FLUENT软件建立了6种当量直径相同,波高和波距不同的波纹管模型,以常温下水为工质,设置不同的雷诺数并进行数值模拟。模拟结果显示,波纹管的波高波距比和雷诺数作为影响波纹管换热性能的两个重要因素,对波纹管的换热系数有着较显著的影响。其中,在一定范围内波纹管的换热系数随着雷诺数的增大而增大,另外,当波纹管的波高波距比值在0.24~0.26范围之间时波纹管的换热系数可以达到一个相对较优的值。  相似文献   

15.
通过三维数值模拟,对侧置三角小翼纵向涡发生器的顺排和叉排管翅式换热器的流动和传热特性进行了研究。结果表明:在研究的Re数范围内,采用侧置三角小翼措施后,无论对顺排还是叉排管翅式换热器,其换热增强的比例均大于阻力增大的比例;在低Re数时,采用该强化措施的结构比高Re数时具有更优的换热和阻力综合性能。侧置三角小翼强化换热的内在机理可以归结为改善了温度场和速度场的协同性,即减小了速度和温度梯度间的夹角。  相似文献   

16.
In this work, the forced convection of a nanofluid flow in a microscale duct has been investigated numerically. The governing equations have been solved utilizing the finite volume method. Two different conjugated domains for both flow field and substrate have been considered in order to solve the hydrodynamic and thermal fields. The results of the present study are compared to those of analytical and experimental ones, and a good agreement has been observed. The effects of Reynolds number, thermal conductivity and thickness of substrate on the thermal and hydrodynamic indexes have been studied. In general, considering the wall affected the thermal parameter while it had no impact on the hydrodynamics behavior. The results show that the effect of nanoparticle volume fraction on the increasing of normalized local heat transfer coefficient is more efficient in thick walls. For higher Reynolds number, the effect of nanoparticle inclusion on axial distribution of heat flux at solid–fluid interface declines. Also, less end losses and further uniformity of axial heat flux lead to an increase in the local normalized heat transfer coefficient.  相似文献   

17.
In this investigation, the behavior of non-Newtonian nanofluid hydrodynamic and heat transfer are simulated. In this study, we numerically simulated a laminar forced non-Newtonian nanofluid flow containing a 0.5 wt% carboxy methyl cellulose (CMC) solutionin water as the base fluid with alumina at volume fractions of 0.5 and 1.5 as the solid nanoparticle. Numerical solution was modelled in Cartesian coordinate system in a two-dimensional microchannel in Reynolds number range of 10≤Re≤1000. The analyzed geometrical space here was a rectangular part of whose upper and bottom walls was influenced by a constant temperature. The effect of volume fraction of the nanoparticles, Reynolds number and non-Newtonian nanofluids was studied. In this research, the changes pressure drop, the Nusselt number, dimensionless temperature and heat transfer coefficient, caused by the motion of non-Newtonian nanofluids are described. The results indicated that the increase of the volume fraction of the solid nanoparticles and a reduction in the diameter of the nanoparticles would improve heat transfer which is more significant in Reynolds number. The results of the introduced parameters in the form of graphs drawing and for different parameters are compared.  相似文献   

18.
This study aimed at exploring influence of T-semi attached rib on the turbulent flow and heat transfer parameters of a silver-water nanofluid with different volume fractions in a three-dimensional trapezoidal microchannel. For this purpose, convection heat transfer of the silver-water nanofluid in a ribbed microchannel was numerically studied under a constant heat flux on upper and lower walls as well as isolated side walls. Calculations were done for a range of Reynolds numbers between 10,000 and 16,000, and in four different sorts of serrations with proportion of rib width to hole of serration width (R/W). The results of this research are presented as the coefficient of friction, Nusselt number, heat transfer coefficient and thermal efficiency, four different R/W microchannels. The results of numerical modeling showed that the fluid's convection heat transfer coefficient is increased as the Reynolds number and volume fraction of solid nanoparticle are increased. For R/W=0.5, it was also maximum for all the volume fractions of nanoparticle and different Reynolds numbers in comparison to other similar R/W situations. That's while friction coefficient, pressure drop and pumping power is maximum for serration with R/W=0 compared to other serration ratios which lead to decreased fluid-heat transfer performance.  相似文献   

19.
对油基钻屑在螺纹推进式换热器内的流动换热过程进行了数值模拟,研究了螺杆转速、油基钻屑雷诺数Re和螺纹截面形状对流动换热的影响。结果表明:随着螺杆转速增加,传热系数、油基钻屑出口温度均增大;同时发现,当雷诺数Re<250时,壳侧Nusselt数随雷诺数Re增大而迅速增大,此后雷诺数对Nusselt数影响较小;Nusselt数随曲率比di/D增大而增大。为方便工程设计,利用数值结果给出了油基钻屑的流动换热关系式。  相似文献   

20.
An experimental study was performed to determine the heat transfer characteristics of a premixed butane/air round flame jet, of low Reynolds number, impinging upwards normally on a flat rectangular plate. The effects of the exit Reynolds number and equivalence ratio of the flame jet, and the distance between the nozzle and the impingement plate, on the thermal performance of the jet were examined. The range of Reynolds numbers was selected to cover the laminar to the transitional flow conditions. The investigations were conducted with equivalence ratios corresponding to the fuel-rich, stoichiometric, and fuel-lean conditions. The nozzle-plate distance was varied from 1d to 8d. Within the range of Reynolds numbers investigated, the highest Nusselt numbers were obtained at the equivalence ratio of φ = 0.85 when the nozzle-plate distance was maintained at 5d. At the stoichiometric condition, the highest Nusselt number was obtained at the nozzle- plate distance of 6d. Nondimensional correlations were obtained from the experimental results and presented to predict the maximum Nusselt number and average Nusselt number for laminar flame jets as a function of the nozzle-plate distance, Reynolds number, and equivalence ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号