首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe photoluminescence measurements made on mesa geometry quantum dots and wires with exposed side walls fabricated by laterally patterning undoped GaAs/AlGaAs quantum wells using electron beam lithography and dry etching. At low temperature the photoluminescence efficiency of many but not all of the GaAs quantum dot arrays scales with the volume of quantum well material down to lateral dimensions of 50nm. This behaviour contrasts with that found in wires produced at the same time where the intensity falls off rapidly with decreasing wire width for dimensions below 500nm but is recovered by overgrowth with indium tin oxide, possibly as a result of strain. Narrow overgrown wires exhibit anisotropy in polarized excitation spectra which is discussed in relation to strain and lateral confinement effects.  相似文献   

2.
报道了在V型槽图形衬底上利用分子束外延技术外延生长的GaAs/AlGaAs量子线.外延截面在扫描电子显微镜下可以看到在V型槽底部形成了弯月型量子线结构,量子线尺寸约为底边60 nm高14 nm的近三角形.低温87 K下光致发光谱测试在793.7和799.5 nm处出现峰值,验证了量子线的存在.理论近似计算结果显示,相比等宽度量子阱有8 meV的蓝移正是由于横向量子限制引起的. 关键词: V型槽图形衬底 量子线 GaAs  相似文献   

3.
We report the successful fabrication of a V-grooveAl0.5Ga0.5As/GaAs/Al0.5Ga0.5As quantum wire system and the temperature-dependent photoluminescence (PL) measurement. The PL spectra are dominated by four features at 681, 642, 635 and 621 nm attributed to the luminescences from quantum wire, top, vertical and side-wall well regions by micro-PL measurements. By the calculations of the energy structure, discrete states (localized sublevels) in the quantum wire region and continuum states (extended along the side-wall and vertical quantum wells) in side-wall and vertical quantum wells have been obtained in both the conduction and valence bands. The calculated excitation energies explain very well the peak positions and their temperature dependence in the photoluminescence measurements.  相似文献   

4.
1 Introduction Recently, there is considerable interest in the fabrication and study of quasi-one di-mensional quantum wires (QWRs) due to their potential application for novel optoelec-tronic devices such as QWR laser array [1,2] etc. Among the various techniques devel-oped for producing quasi-one dimensional (quasi-1D) QWRs, the self-organized growth on patterned substrates has been proven to be one of the most promising methods, due to the simplicity of fabrication[3―5]. The QWR is fa…  相似文献   

5.
Photoluminescence measurements on GaAs/Al0.3Ga0.7As quantum dots and wires fabricated using electron bears lithography and reactive ion etching are reported both before and after regrowth with a layer of Al0.4Ga0.6As. Dots exhibit little change in luminescence efficiency from the bulk with a reduction in diameter either before or after regrowth. Surface recombination therefore appears to be suppressed. In wires, however, luminescence intensity is very sensitive to wire width, decreasing rapidly with this parameter, but recovers and becomes independent of size after overgrowth. The temperature dependence of the photoluminescence from the dots and wires showed that dots and wires less than 150nm in width luminesced to higher temperatures than the larger diameter structures and dots liminesced to higher temperatures than wires of comparable width. This suggests that there is a finite coherence area effect which increases the radiative lifetimes of excitons in the quantum structures due to the geometric constraint, in the lateral direction in the wires and in all three directions in the dots. Below 20K bound exciton luminescence dominates in the dots but not in the wires. In wires it is still possible for the excitons to diffuse to nonradiative sites within the exciton lifetime. Regrowth at 750°C causes migration of aluminium into the quantum well and causes the shape of the well to become parabolic resulting shifts in the exciton emission to shorter wavelengths, making it difficult to separate the effect of processing from those due to quantum confinement.  相似文献   

6.
The effect of barrier thickness on strain uniformity of a laterally aligned array of InGaAs quantum wire in GaAs matrix has been investigated with the finite elements method. A decrease in GaAs barrier thickness was predicted to assist the InGaAs wire to maintain its strain state in the central region up to a longer distance towards the edge of the wire along the width direction. It is suggested that, by reducing the spacing between the quantum wires, it is possible to improve uniformity of strains within the wire, thereby yielding more uniform opto-electronic properties such as sharp and narrow peaks in photoluminescence spectra.  相似文献   

7.
Lateral wire arrays have been fabricated from a single modulation-doped GaAs quantum well employing reactive ion etching. Depending on the etch depth, the two-dimensional electron gas (2DEG) in the well acquires different degrees of modulation up to complete confinement. The different regimes are identified by their unique photoluminescence and Raman spectra. Deep-etched wires show plasmon resonances down to a width of 100nm.  相似文献   

8.
Electron spin coherence has been generated optically in n-type modulation doped (In,Ga)As/GaAs quantum dots (QDs) which contain on average a single electron per dot. The coherence arises from resonant excitation of the QDs by circularly polarized laser pulses, creating a coherent superposition of an electron and a trion. Time dependent Faraday rotation is used to probe the spin precession of the optically oriented electrons about a transverse magnetic field. The coherence generation can be controlled by pulse intensity, being most efficient for (2n+1)pi pulses.  相似文献   

9.
Quantum wire (QWR) heterostructures suitable for optoelectronic applications should meet a number of requirements, including defect free interfaces, large subband separation, long carrier lifetime, efficient carrier capture. The structural and opticl properties of GaAs/AlGaAs and InGaAs/GaAs quantum wire (QWR) heterostructures grown by organometallic chemical vapor deposition on nonplanr substrates, which satisfy many of these criteria, are described. These crescent-shaped QWRs are formed in situ during epitaxial growth resulting in virtually defect free interfaces. Effective wire widths as small as 10nm have been achieved, corresponding to electron subband separations greater than KBT at room temperature. The enhanced density of states at the QWR subbands manifests itself in higher optical absorption and emission as visualized in photoluminescence (PL), PL excitation, amplified spontaneous emission and lasing spectra of these structures. Effective carrier capture into the wires via connected quantum well regions, which is important for enhancing the otherwise extremely small capture cross section of these wires, has also been observed. Room temperature operation of GaAs/AlGaAs and strained InGaAs/GaAs QWR lasers with threshold currents as low as 0.6mA has been demonstrated.  相似文献   

10.
Effectively atomically flat GaAs/AlAs interfaces over a macroscopic area (“super-flat interfaces”) have been realized in GaAs/AlAs and GaAs/(GaAs) (AlAs) quantum wells (QWs) grown on (4 1 1)A GaAs substrates by molecular beam epitaxy (MBE). A single and very sharp photoluminescence (PL) peak was observed at 4.2 K from each GaAs/AlAs or GaAs/(GaAs) (AlAs) QW grown on (4 1 1)A GaAs substrate. The full-width at half-maximum (FWHM) of a PL peak for GaAs/AlAs QW with a well width ( ) of 4.2 nm was 4.7 meV and that for GaAs/(GaAs) (AlAs) QW with a smaller well width of 2.8 nm (3.9 nm) was 7.6 meV (4.6 meV), which are as narrow as that for an individual splitted peak for conventional GaAs/AlAs QWs grown on (1 0 0) GaAs substrates with growth interruption. Furthermore, only one sharp peak was observed for each GaAs/(GaAs) (AlAs) QW on the (4 1 1)A GaAs substrate over the whole area of the wafer (7 7 mm ), in contrast with two- or three-splitted peaks reported for each GaAs/AlAs QW grown on the (1 0 0) GaAs substrate with growth interruption. These results indicate that GaAs/AlAs super-flat interfaces have been realized in GaAs/AlAs and GaAs/(GaAs) (AlAs) QWs grown on the (4 1 1)A GaAs substrates.  相似文献   

11.
We have investigated circular-polarized photoluminescence (CPL) from a novel quantum structure in which a ferromagnetic semiconductor (Ga,Mn)As is placed adjacent to the GaAs quantum well. By eliminating the contribution of the magneto-circular dichroism effect of the (Ga,Mn)As top layer from the observed CPL, we found a small but nonnegligible contribution of quantum mechanical coupling between the GaAs quantum well states and the spin-polarized states in (Ga,Mn)As.  相似文献   

12.
We present a theoretical study for the cartography of the interface roughness of AlGaAs/ GaAs V-shaped quantum wires which is reflected on the photoluminescence and micro-photoluminescence spectra of these structures. The model developed is based on the existence of microscopic compositional fluctuations at the interfaces. The fine structure of the micro-photoluminescence spectrum is attributed to localized excitonic states in island-like fluctuations which act as quantum boxes distributed along the free direction of the wire. The fluctuation of the concentration of these boxes together with the estimation of their sizes are used to explain the evolution of the signals along the wire axis and to produce the overall photoluminescence spectrum. The model is applied to a V-shaped Al0.3Ga0.7As/GaAs quantum wire and reproduces successfully the observed photoluminescence and micro-photoluminescence characteristics.  相似文献   

13.
Hot electron cooling in variously structured and doped quantum wells and superlattices has been studied by low temperature steady-state photoluminescence. A parabolic quantum well realized by thickness grading of Al0.3Ga0.7As and GaAs epitaxial layers deposited by molecular beam epitaxy with electron level spacings of ∼25 meV did not show increased electron plasma temperatures compared to thick epitaxially deposited GaAs or square quantum wells with electron level spacings greater than the LO phonon energy of GaAs; this implies that mechanisms involving intersubband Δk ≠ 0 transitions and interfacial recombination are dominant in the parabolic structure. Investigations as a function of carrier concentration in modulation-doped quantum wells and n-type superlattices with strong miniband formation indicate that increasing the carrier concentration in either structure above ∼ 5 × 1017 cm-3 significantly increases the electron plasma temperatures, even under low light excitation, suggesting that such structures may be suited for high efficiency hot electron photovoltaic and photoelectrochemical cells.  相似文献   

14.
We have analysed the dimensionality of the emitter electron gas of double barrier devices (DBD) under bias and found evidence for the coexistence of both two- and three-dimensional (2D and 3D) electron gases. Magnetotunneling measurements performed on a series of n-type GaAs/(AlGa)As DBD with varying emitter doping profiles have shown that the electron gas may have a 2D and/or 3D character depending on the emitter doping level and on the applied bias. In devices with heavily doped emitter layers, electrons tunnel from 3D-states, whereas for lightly doped emitters a 2D-electron gas is formed in the emitter contact. For intermediary doping levels both 2D- and 3D-electron gases may coexist, depending on the applied bias.  相似文献   

15.
Transient photoluminescence of GaAs/AlGaAs quantum wires and quantum dots formed by strain confinement is studied as a function of temperature. At low temperature, luminescent decay times of the wires and dots correspond to the radiative decay times of localized excitons. The radiative decay time can be either longer or shorter than that of the host quantum well, depending on the size of the wires and dots. For small wires and dots (∼ 100 nm stressor), the exciton radiative recombination rate increases due to lateral confinement. Exciton localization due to the fluctuation of quantum well thickness plays an important role in the temperature dependence of luminescent decay time and exciton transfer in quantum wire and dot structures up to at least ∼ 80 K. Lateral exciton transfer in quantum wire and dot structures formed by laterally patterning quantum wells strongly affects the dynamics of wire and dot luminescence. The relaxation time of hot excitons increases with the depth of strain confinement, but we find no convincing evidence that it is significantly slower in quasi 1-D or 0-D systems than in quantum wells.  相似文献   

16.
Results are presented demonstrating that selective intermixing of GaAs/AlGaAs quantum well heterostructures by SiO2 capping and subsequent annealing can be spatially localized with a length scale compatible with the observation of lateral quantum confinement effects. Patterning of a 400 nm-thick SiO2 encapsulation layer deposited by rapid thermal chemical vapor deposition into arrays of wires was performed using high resolution electron beam lithography and subsequent reactive ion etching. After high temperature (850°C) annealing, photoluminescence experiments indicate the creation of double barrier quantum wires when small trenches (< 100 nm) are etched in the SiO2 film at a period greater than 800 nm. Signatures of the formation of one-dimensional subbands are observed both in photoluminescence excitation spectroscopy and linear polarization anisotropy analysis. A mechanism involving the ability of the stress field generated during annealing at the SiO2 film edges to pilot the diffusion of the excess gallium vacancies which are responsible for the enhanced interdiffusion under SiO2 is suggested to account for the high lateral selectivity achievable with this novel process.  相似文献   

17.
Carrier spin coherence in a p-doped GaAs/(Al,Ga)As quantum well with a diluted hole gas is studied by picosecond pump-probe Kerr rotation. For resonant optical excitation of the positively charged exciton the spin precession shows two types of oscillations: Electron spin beats decaying with the charged exciton radiative lifetime of 50 ps, and long-lived hole spin beats with dephasing times up to 650 ps, which decrease with increasing temperature, underlining the importance of hole localization. The mechanism of hole spin coherence generation is discussed.  相似文献   

18.
Well-defined one-dimensional single (In,Ga)As quantum dot (QD) arrays have been successfully formed on planar singular GaAs (1 0 0) in molecular beam epitaxy by self-organized anisotropic strain engineering of an (In,Ga)As/GaAs quantum wire (QWR) superlattice (SL) template. The distinct stages of template formation, which govern the uniformity of the QD arrays, are directly imaged by atomic force microscopy (AFM). The AFM results reveal that excess strain accumulation causes fluctuations of the QWR template and the QD arrays. By reducing the amount of (In,Ga)As and increasing the GaAs separation layer thickness in each SL period, the uniformity of the QD arrays dramatically improves. The single QD arrays are straight over more than 1 μm and extended to 10 μm length. Capped QD arrays show clear photoluminescence emission up to room temperature.  相似文献   

19.
The response of an electron to an external electric field in different shapes of infinite quantum well wires has been investigated. The self-polarization effect which can be defined as the influence of the barrier potential on the impurity electron is studied for the quantum well wire of square, rectangular and cylindrical cross-sections. An external electric field vanishes due to the self-polarization effect has been calculated. It is shown that the self-polarization effect outside of the center depends on both the geometrical form of the wire and the impurity position in the same structure.  相似文献   

20.
One dimensional (1D) quantum wire structures are emerging as the new generation of semiconductor nanostructures offering exciting physical properties which have significant potential for novel device applications. These structures have been the subject of intensive investigation recently including extensive theoretical and experimental studies of their interband optical properties. In this work we present the results of our study of the intersubband optical transitions in 1D semiconductor quantum wires. The crescent shaped quantum wire structures used for this research were grown on non-planar GaAs substrates. The intersubband transition energy spectra, the selection rules, and the two dimensional envelope wavefunctions were theoretically investigated by using our new LENS (local envelope states) expansion. We present recent experimental results on modulation doped V-groove quantum wires, including PL, PLE, TEM, CL, and infrared polarization resolved spectroscopy. We have observed a very unusual absorption lineshape at the far-infrared wavelengths that we assigned to phonon assisted Fano resonance in a modulation doped quantum wire structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号