首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liu R  Guan G  Wang S  Zhang Z 《The Analyst》2011,136(1):184-190
To convert the binding events on molecularly imprinted polymers (MIPs) into physically detectable signals and to extract the templates completely are the great challenges in developing MIP-based sensors. In this paper, a core-shell nanostructure was employed in constructing the MIP chemosensor for the improvements of template extraction efficiency and imprinted sites accessibility. Vinyl-substituted zinc(II) protoporphyrin (ZnPP) was used as both fluorescent reporter and functional monomer to synthesize atrazine-imprinted polymer shell at silica nanoparticle cores. The template atrazine coordinates with the Lewis acid binding site Zn of ZnPP to form a complex for the molecular imprinting polymerization. These imprinted sites are located in polymer matrix of the thin shells (~8 nm), possessing better accessibility and lower mass-transfer resistance for the target molecules. The fluorescence properties of ZnPP around the imprinted sites will vary upon rebinding of atrazine to these imprinted sites, realizing the conversion of rebinding events into detectable signals by monitoring fluorescence spectra. This MIP probe showed a limit of detection (LOD) of about 1.8 μM for atrazine detection. The core-shell nanostructured MIP method not only improves the sensitivity, but also shows high selectivity for atrazine detection when compared with the non-molecular imprinted counterparts.  相似文献   

2.
The adsorption of, the still widely used, herbicide atrazine on model soil components, such as humic acid and humic acid-silica gel mixtures, was investigated in a series of batch experiments, under different experimental conditions (ionic strength, temperature, and pH). The investigation aimed at obtaining an estimate of the contribution of each of the soil components on the adsorption of atrazine from aqueous solutions. The kinetics of atrazine adsorption on humic acid showed two steps: a fast step, of a few hours duration, and a second slow step, which continued for weeks. The kinetics of adsorption data gave a satisfactory fit to the Elovich equation. Τhe adsorption of atrazine on the test substrates was found to be reversible in all cases. The atrazine uptake data on the test substrates were fitted best with the Freundlich adsorption isotherm. The ionic strength of the atrazine aqueous solutions did affect the amount of the atrazine adsorbed on the test substrates, suggesting that electrostatic forces between atrazine molecules and soil play a significant role in the adsorption process. An increase of temperature resulted in a decrease of atrazine adsorption on humic acid at low atrazine equilibrium concentrations. However, for higher levels of equilibrium concentrations (≥3 mg/L) the amount of atrazine adsorbed onto the test substrate increased as temperature increased. The calculated isosteric enthalpies of adsorption ranged between slightly exothermic at low atrazine uptake and slightly endothermic at high atrazine uptake, all values being in the range of physisorption.  相似文献   

3.
《Analytical letters》2012,45(4):807-818
Abstract

A new method is described to analyse a binary mixture of atrazine and chlorpyrifos, using first-derivative spectrophotometry for atrazine and first derivative of the ratio spectra for chlorpyrifos. The procedure does not require any separation step. Calibration graphs were linear up to 15 μg.mL?1 of atrazine and to 10 μg.mL?1 of chlorpyrifos. The method has been applied to determine both compounds in pesticide formulations, in soils and waters.  相似文献   

4.
The application of the ratio spectra derivative and partial least-squares methods to the simultaneous determination of atrazine and its degradation product desethylatrazin-2-hydroxy is presented. When the different methods are applied to the determination of these products in ground waters, PLS method gives the best results due to the presence of interfering substances with overlapping spectra.  相似文献   

5.
The fragment ion formation characteristics of the radical anions generated from hexahydro-1,3,5-trinitrotriazine (RDX) and its three nitroso metabolites were studied using GC/MS with negative chemical ionization (NCI) to understand the fragmentation mechanisms responsible for the formation of the most abundant ions observed in their NCI mass spectra. Ab initio and density functional theory calculations were used to calculate relative free energies for different fragment ion structures suggested by the m/z values of the most abundant ions observed in the NCI mass spectra. The NCI mass spectra of the four nitramines are dominated by ions formed by the cleavage of nitrogen-nitrogen and carbon-nitrogen bonds in the atrazine ring. The most abundant anions in the NCI mass spectra of these nitramines have the general formulas C(2)H(4)N(3)O (m/z 86) and C(2)H(4)N(3)O(2) (m/z 102). The analyses of isotope-labeled standards indicate that these two ions are formed by neutral losses that include two exocylic nitrogens and one atrazine ring nitrogen. Our calculations and observations of the nitramine mass spectra suggest that the m/z 86 and m/z 102 ions are formed from either the (M--NO)(-) or (M--NO(2))(-) fragment anions by a single fragmentation reaction producing neutral losses of CH(2)N(2)O or CH(2)N(2)O(2) rather than a set of sequential reactions involving neutral losses of HNO(2) or HNO and HCN.  相似文献   

6.
In this study, the role of oxygen in the regeneration of Fe(III) during the degradation of atrazine in UV/Fe(III) process was studied. The degradations of atrazine in UV/Fe(III) and UV-photolysis processes in the presence and absence of oxygen were compared. The results showed that the degradations of atrazine in these processes followed the pseudo-first-order kinetics well. The process exhibiting the highest rate constant (k) was UV/Fe(III)/air process, because k-value for UV/Fe(III)/air process was about 1.47, 2.23 and 2.56 times of those for UV/Fe(III)/N2, UV/air and UV/N2 processes, respectively. The degradation of atrazine was enhanced by oxygen in UV/Fe(III) process and the enhancement was more remarkable at higher initial concentrations of Fe(III). The investigation into the changes of Fe(III) concentrations demonstrated that the presence of oxygen led to the regeneration of Fe(III), which resulted in the enhancement of atrazine degradation. With air bubbling, the ferric ions were 25% more than those with N2 bubbling. The experimental data showed the regeneration of Fe(III) required the excited organic molecules and oxygen and on the basis of these results, the regeneration mechanism of Fe(III) was proposed. It was also found that due to the oxidation of Fe(II), the degradation of atrazine in UV/Fe(II)/air process was effective at a low Fe(II) concentration of 7 mg/L, similar to that in UV/Fe(III)/air process. This study makes clear the role of oxygen in the regeneration of Fe(III), and thus it provides a guide to reduce the input of Fe(III) and is helpful to the application of UV/Fe(III) process in practice.  相似文献   

7.
Atrazine is one of the most frequently detected pesticides and poses a great risk to humans and the environment. In this study, the effects of two submerged macrophytes, Potamogeton crispus and Myriophyllum spicatum, on phytoremediation of atrazine were evaluated. The results showed that atrazine decayed faster in the pots where these two plants were cultivated than that of the control without the plants during the 60-day course of the experiment. Metabolite analyses of atrazine indicated that atrazine was mainly converted to diaminochlorotriazine and hydroxyatrazine. Dissipation kinetics and risk assessment of atrazine showed that atrazine was degraded rather fast in maize and generally safe for human consumption at the recommended high dosage of atrazine. The maximum permissible intake (MPI) for atrazine was calculated to be 0.23 μg/person/day for a child and 0.72 μg/person/day for an adult. However, due to the large-scale application of atrazine over the years, the atrazine residue still poses a great threat to the environment. By using submerged macrophytes M. spicatum and P. crispus, atrazine could be absorbed from the sediment, hence remediating contaminated sediment and water. This study established a protocol for evaluating submerged plants in absorption or phytoremediation of pesticides.  相似文献   

8.
《Analytical letters》2012,45(2-3):251-261
An optical fiber enzymatic biosensor was formed by immobilizing cells containing atrazine chlorohydrolase to the surface of a pH-sensitive optode. This enzyme catalyzes the dechlorination of atrazine, releasing hydrochloric acid and creating a signal response from the optode that was proportional to the atrazine concentration. Biosensors capable of quantitative and sensitive atrazine concentration measurements were developed using the atrazine chlorohydrolase of both Pseudomonas sp. ADP and Clavibacter michiganese sp. ATZ1. The biosensors based on both bacteria had a limit of detection of less than 1 ppb (validated using gas chromatography) and a linear range from 1 ppb to 100 ppb atrazine. Response times were a function of concentration and the source of enzyme, with a response time of 10 or 20 min for a 25 ppb atrazine solution. The performance of these sensors at various temperatures, pH values, and buffer capacities was also studied. The use of poly-L-lysine to increase the physical stability of biosensors containing Pseudomonas sp. ADP provided higher durability with no performance drawbacks. The atrazine biosensor was also used to measure atrazine concentrations in a soil column that was continuously fed a solution in which the atrazine concentration was increased or decreased. The atrazine biosensor provided continuous, in-situ measurements in the soil column, the first time that continuous biosensor measurements have been demonstrated in a soil system.  相似文献   

9.
Dost K  Jones DC  Auerbach R  Davidson G 《The Analyst》2000,125(10):1751-1755
This paper presents an analytical technique for the determination of pesticides in soil by packed-column supercritical fluid chromatography interfaced with atmospheric pressure chemical ionisation mass spectrometry (pSFC-APCI-MS). The technique provides a versatile method for the detection and quantification of pesticides belonging to three different commonly used classes, triazines (ametryne, atrazine), carbamates (carbofuran) and sulfonylureas (chlorsulfuron, metsulfuron methyl and benzsulfuron methyl). The APCI mass spectra for all the pesticides studied consisted of protonated molecule ions as the most abundant ion at low cone voltages, except for metsulfuron methyl and benzsulfuron methyl, which gave a fragment ion as the most abundant ion with the protonated molecule ion at low intensity. Increasing the cone voltage provided informative fragmentation patterns for all species. The technique shows good linearity over the concentration range of 0.1-50 micrograms ml-1, with r2 values as follows: atrazine 0.997, ametryne 0.995, carbofuran 0.999, benzsulfuron methyl 0.999, chlorsulfuron 0.995 and metsulfuron methyl 0.997. The detection limits in the selected ion mode were atrazine 201, ametryne 144 and carbofuran 385 pg, which were calculated by using the standard solution, and benzsulfuron methyl 2.045, chlorsulfuron 1.435 and metsulfuron methyl 2.414 ng, which were determined by using spiked soil samples. The pSFC-MS system was shown to have a high degree of reproducibility. The technique was then applied to the determination of the above pesticides in soil samples. The results obtained show that there is no matrix effect from the soil and that the detection limits for all pesticides in soil were similar to those found for the standard solutions.  相似文献   

10.
Surface-enhanced Raman scattering (SERS) spectra of a series of n-hydroxybenzoic acids (n-HBA, n = P, M and O) adsorbed on the silver nano-particles were studied, respectively, in the silver colloidal solution and on the dried silver-coated filter paper. On the same substrate, the different molecules' SERS spectra were different, while on the different substrates the same molecules' SERS spectra were also different. Significant changes were found in the SERS spectra of PHBA molecules adsorbed on the two substrates, and the changes found in MHBA's spectra on two substrates were next to PHBA's, while almost no changes were found in the spectra of OHBA molecules. Moreover, it was found, on the filter paper, that the SERS spectra of the same molecules would change with the coverage density of the silver nano-particles. The analyses showed that the origins of these changes were the different adsorption behavior of molecules adsorbed on the silver nano-particles. Because in these three molecules the relative positions of the carboxyls and hydroxyls on the benzenes are different, the adsorption behaviors of these three molecules adsorbed on the silver surfaces are also different. The experimental results suggest that the surface characteristic of the substrate and the surface configuration of the adsorbate could exert a great influence on the adsorption behavior of the adsorbates on the substrates.  相似文献   

11.
The results of a study in which ultrafiltration fractionation in combination with UV_VIS, fluorescence, FT-IR and NMR spectroscopy was used to characterize a stoichiometrically characterized Laurentian fulvic acid are presented. The non-additivity of the spectra supports the hypothesis that the characteristic brown color of fulvic acid results from donor-acceptor interactions which shift to the red and broader constituent chromophoric bands. The study includes evaluation of the binding behavior of the polar herbicide atrazine with different fulvic acid fractions and the interactions among fulvic acid fractions themselves. Binding is mainly by the largest molecular weight fraction and competition occurs between attrazine and lower molecular weight fractions of fulvic acid.  相似文献   

12.
Abstract

A simplified approach to screen cropland for residues of atrazine and its main metabolite deethylated atrazine has been presented. A time-saving and cost-effective screening method has been developed using an aqueous extraction step. The measurement of the extracts was done by immunoassay technique (ELISA). Antibodies against atrazine and deethylated atrazine were used in the study. The overall detection limit of the analysis of atrazine residues in soil is 1 μg kg?1 and 2 μg kg?1 for its deethylated metabolite, respectively. It is shown that this approach yields adequate information to judge the ground-water hazard potential of treated fields.  相似文献   

13.
Abstract

A survey of atrazine and its metabolites in Kansas ground water indicated that ground-water quality was impacted by stream-aquifer interaction between rivers in the Kansas River basin and their adjacent alluvial aquifers. Atrazine was detected in 19 of the 78 samples. The most common metabolite, deethylatrazine, was detected in 25 samples, 18 of which also had atrazine. The deethylatrazine/atrazine ratio (DAR) of < 1.0 indicates rapid movement of agricultural chemicals to ground water. In this study, 12 of 18 samples had DAR values < 1.0, suggesting rapid recharge to the aquifers. Hydroxyatrazine is seldom detected in ground water. In this study hydroxyatrazine was detected primarily in wells sited in alluvium of rivers. These rivers contain atrazine in varying concentrations. Results of the study suggest that stream-aquifer interaction is a process contributing to the presence of both atrazine and its metabolites in ground water in these areas.  相似文献   

14.
As a widely used herbicide, the threat of atrazine to both environment and health of people has become the focus. Therefore, the research and analysis of atrazine are getting more important. In this work, the MIT was used to detect atrazine theoretically. Atrazine was taken as a template molecule. MAA, MMA and TFMAA were taken as the functional monomers, respectively. The geometry optimization, the nature of hydrogen bonds, the NBO charge, and the binding energies of the imprinted molecule with the functional monomers were investigated at the B3LYP/6-31g(d,p) level. Results indicated that atrazine had the strongest interaction with TFMAA. When the ratio of atrazine and TFMAA was 1:6, the amount of H-bond formed from atrazine and TFMAA was the largest. Moreover, TFMAA owned the largest binding energy with atrazine while MMA owned the smallest. The study is helpful to interpret experiment phenomena of molecular imprinting and select better functional monomers.  相似文献   

15.
Although the herbicide atrazine has been reported to not react measurably with free chlorine during drinking water treatment, this work demonstrates that at contact times consistent with drinking water distribution system residence times, a transformation of atrazine can be observed. Some transformation products detected through the use of high performance liquid chromatography–electrospray mass spectrometry are consistent with the formation of N-chloro atrazine. The effects of applied chlorine, pH, and reaction time on the transformation reaction were studied to help understand the practical implications of the transformation on the accurate determination of atrazine in drinking waters. The errors in the determination of atrazine are a function of the type of dechlorinating agent applied during sample preparation and the analytical instrumentation utilized. When a reductive dechlorinating agent, such as sodium sulfite or ascorbic acid is used, the quantification of the atrazine can be inaccurate, ranging from 2-fold at pH 7.5 to 30-fold at pH 6.0. The results suggest HPLC/UV and ammonium chloride quenching may be best for accurate quantification. Hence, the results also appear to have implications for both compliance monitoring and health effects studies that utilize gas chromatography analysis with sodium sulfite or ascorbic acid as the quenching agent.  相似文献   

16.
The reduction of atrazine and terbutylazine was preceded by protonation equilibrium. Three protonation sites of thes-triazine molecule determined the structure of the final reduction product. Protonation was investigated by the change of UV–Vis spectra. Two slightly different pKs corresponding to protonation on N5 and N1 heteroatoms were evaluated. The principal reduction pathway involved the cleavage of a chlorine atom. A small quantity of desethylatrazine was detected in the most acidic media.  相似文献   

17.
The detection of trace amounts of pesticides is essential for the quality control of waters, particularly with their inevitable increasing use with the growing demand for food. In this study, we report on the detection of atrazine, a highly toxic herbicide, down to 5?×?10?12 M, which is sufficient to monitor the quality of drinking water even according to the most stringent international regulations. Such detection was performed with surface-enhanced Raman scattering (SERS) in atrazine incorporated into silver nanoparticles (AgNPs) colloids, with the SERS spectra being treated with Sammon’s mapping, an information visualization technique. In addition to providing a fingerprint of the atrazine molecules, SERS is advantageous in comparison with impedance spectroscopy and cyclic voltammetry applied to a sensor array of units made with layer-by-layer (LbL) films containing AgNPs and AuNPs. The combined use of SERS and information visualization methods is promising for monitoring water quality with regard to other pesticides, which may even approach single molecule detection.  相似文献   

18.
19.
In this paper, the bovine serum albumin (BSA) was selected as a target molecule, the sonodynamic damage to protein in the presence of promethazine hydrochloride (PMT) and its mechanism were studied by the means of absorption, fluorescence and circular dichroism (CD) spectra. The results of hyperchromic effect of absorption spectra and quenching of intrinsic fluorescence spectra indicate that the ultrasound-induced BSA molecules damage is enhanced by PMT. The damage degree of BSA molecules increases with the increase of ultrasonic irradiation time and PMT concentration. The results of synchronous fluorescence, three-dimensional fluorescence and CD spectra confirmed that the synergistic effects of ultrasound and PMT induced the damage of BSA molecules. The results of oxidation-extraction photometry with several reactive oxygen species (ROS) scavengers indicate that the damage of BSA molecules could be mainly due to the generation of ROS and both (1)O(2) and OH are the important mediators of the ultrasound-induced BSA molecules damage in the presence of PMT.  相似文献   

20.
Adsorption of atrazine on soils: model study   总被引:1,自引:0,他引:1  
The adsorption of the widely used herbicide atrazine onto three model inorganic soil components (silica gel, gamma-alumina, and calcite (CaCO(3)) was investigated in a series of batch experiments in which the aqueous phase equilibrated with the solid, under different solution conditions. Atrazine did not show discernible adsorption on gamma-alumina (theta=25 degrees C, 3.8相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号