首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 260 毫秒
1.
Conformational energy maps have been calculated, using the PCILO method, for X3PNP(O)X2 and (X3PNPX3)+ for X = H, F, Cl, CH3 as a function of the PNP angle. In H3PNP(O)H2 the global energy minimum corresponds to the eclipsed conformation of the H3P and P(O)H2 fragments for all PNP angles, while in Cl3PNP(O)Cl2, the global minimum always has Cl3P and P(O)C12 staggered: the global minimum in F3PNP(O)F2 corresponds to eclipsed F3P and P(O)F2 fragments at low PNP angles and staggered fragments at high PNP angles: in (CH3))3PNPO(CH3)2 the global minimum conformation is very sensitive to ∠ PNP. Subordinate energy minima occur for all X3PNP(O)X2, species: in particular, there are two local conformational minima for Cl3PNP(O)Cl2 at the optimum value of ∠ PNP, and the relative energies of the three stable conformations are in good agreement with those derivable from the 31P NMR spectrum of this compound. In (X3PNPX3)+ the global minimum, usually the sole minimum on the conformational energy surface, is always close to the eclipsed conformation: free rotation of the X3P groups relative to one another is approached in each (X3PNPX3)+ ion as ∠PNP approaches 180°. The conformations of the transition states for the equilibria between energy minima are reported with their relative energies, for X3PNP(O)X2 (X = H, F. Cl, CH3) and for (Cl3PNPCl3)+  相似文献   

2.
The triply chloro-bridged binuclear complexes [Ph3X=O···H···O=XPh3][Ru2Cl7(XPh3)2]·0.5(CH2Cl2)(H2O) (X = As or P) were obtained from [RuCl3(XPh3)2DMA]·DMA (DMA = dimethylacetamide) CH2Cl2/Et2O solution. The structures were characterized by X-ray diffraction studies. The complexes are formed from two Ru atoms bridged by three chloride anions. The two ruthenium atoms are also coordinated to two non-bridging Cl atoms and an AsPh3 or PPh3 ligand respectively. As an interesting feature, the cations of these complexes are protons, trapped in a very short hydrogen bond between two triphenylarsine or triphenylphosphine oxide molecules.  相似文献   

3.
Applying the quantum-chemical calculations by MP2/6-31G* method molecular structures of trichlorophosphazenes Cl3P=NCOCX3 with X = F and Cl were determined and barriers to intramolecular reorientation of PCl3 group relative to P=N bond and of CF3 and CCl3 groups relative to C-C bond were estimated. The values of potential barriers to internal rotation calculated for isolated molecules were compared with the values of the barriers obtained from the data of NQR and NMR spectroscopy of the compounds in the crystalline state. The structural and dynamic features of the studied molecules are discussed.  相似文献   

4.
The title ligand, C14H14Cl4N5O2P3, is a cyclo­phosphazene lariat (PNP pivot) ether with a spiro‐cyclic 11‐membered macrocyclic ring containing two ether O and two N atoms; the phosphazene ring is nearly planar. The macrocyclic ring contains a four‐centred (trifurcate) N—H⋯O/N—H⋯N hydrogen bond, and the relative inner‐hole size of the macrocycle is ∼1.14 Å in radius. The mol­ecules are linked about inversion centres by N—H⋯N hydrogen bonds into centrosymmetric dimers.  相似文献   

5.
Frank H. Allen 《Tetrahedron》1982,38(18):2843-2853
Structural data relating to 369 organic derivatives of C2X(X=N, O, Si, P, S) and CXY(X, Y=N, O) heterocycles have been retrieved from the Cambridge Crystallogrphic Database and analysed in conjuction with pertinent gas-phase results. Heterocycle geometries are compared with each other, and with those for the ‘parent’ carbocycles cyclopropane and cyclopropene. For saturated C2X rings the previously observed (gas phase) decrease in CC bond length (dcc) and bent-back angle (γ) with increasing heteroatom electronegativity (χx) are confirmed as linear relationships using mean solid state geometry for X=C, N, O, S. The CX bonds shows an effective increase in length with increasing χx, in line with their facile cleavage in ring opening reactions. A model for hybridization changes at C in saturated C2X rings is derived empirically and is in broad agreement with theoretical studies. There is no evidence for geometric variations in the heterocyclic rings induced by π-acceptor substituents, but π-donor substituent effects are directly comparable to those occurring in cyclopropane and cyclopropene. Geometric variations in unsaturated heterocycles are analogous to those in cyclopropene derivatives; CC double bond lengths in available C2X systems appear to indicate a πx dependence. Heteroatom-heteroatom bonds in CYX systems are weak, with N weaker than NN, in agreement with thermochemical reasoning.  相似文献   

6.
Platinum(IV) complexes of the tetramine type [PtEnPy2X2]X2 · H2O (X = Cl, Br) have been found to lose a coordinated pyridine molecule at 125–135°C, thereby transforming into triamines [PtEnPyX3]X. The complex [PtEnPyCl3]NO3 has been isolated. Dissolution of the product of [PtEnPy2Cl2]Cl2 chlorination in HCl results in complete destruction of the five-membered chelate ring. The complex [Pt(NH3)2Py2Cl2](NO3)2 has been isolated. A number of compounds have been studied by X-ray diffraction: [PtEnPy2Cl2]Cl2 · 2H2O (I) (monoclinic, space group P21/c, a = 15.418(2) Å, b = 9.203(1) Å, c = 13.762(3) Å, β = 104.18(2)°, Z = 4, R hkl = 0.25), [PtEnPyCl3]NO3 (II) (monoclinic, space group P21/c, a = 8.194(1) Å, b = 8.846(1) Å, c = 19.855(2) Å, β = 97.10(1)°, Z = 4, R hkl = 0.048), and [Pt(NH3)2Py2Cl2](NO3)2 (III) (orthorhombic, space group Pbca, a = 12.316(2) Å, b = 13.250(3) Å, c = 21.868(4) Å, Z = 8, R hkl = 0.027). The reaction of [PtEnPyBr3]Br with bromine gives the polybromide [PtEnPyBr3]Br · Br2 · 0.5 H2O. The chlorination of [PtEnPyCl3]Cl gives the chloramine complex [Pt(NH2-CH2-NH(Cl)PyCl3]Cl · H2O.  相似文献   

7.
Ab initio quantum chemical calculations have been performed on X2Cl? and X2Cl (X = C, Si, Ge) clusters. The geometrical structures, vibrational frequencies, electronic properties and dissociation energies are investigated at the Hartree–Fock (HF), Møller–Plesset second‐ and fourth‐order (MP2, MP4), CCSD(T) level with the 6‐311+G(d) basis set. The X2Cl (X = C, Si, Ge) and X2Cl? (X = Si, Ge) take a bent shape obtained at the ground state, while C2Cl? has a linear structure. The impact on internal electron transfer between the X2Cl and the corresponding anional clusters is studied. The three different types of electron affinities (EAs) at the CCSD(T) are reported. The most reliable adiabatic electronic affinities, obtained at the CCSD(T)/cc‐pvqz level of theory, are predicted to be 3.30, 2.62, and 1.98 eV for C2Cl, Si2Cl, and Ge2Cl, respectively. The calculated EAs of C2Cl and Ge2Cl are in good agreement with theoretical results reported. The correlation effects and basis sets effects on the geometrical structures and dissociation energies are discussed. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

8.
Vibrational spectra are reported and assigned for the planar D3h symmetry cyclopropenium cations [C3X3]+ (X= Cl, Br or I) from investigations of the compounds C3Cl3AlCl4, C3Cl3GaCl4, C3Cl3FeCl4, C3Cl3SbCl6, C3Br3AlBr4 and C3l4, using conventional infrared and Raman spectroscopy and Fourier transform Raman spectroscopy. The symmetric C—X stretching modes of [C3X3]+ occur at 458, 269 and 180 cm−1 and the ring-breathing modes at 1790, 1732 and ca. 1650 cm−1 in [C3Cl3]+, [C3Br3]+ and [C3I3]+, respectively. A normal coordinate calculation is performed for [C3Cl3]+.  相似文献   

9.
In this paper we extend our previous studies to investigate the ionization energies of some XPY3 molecules (X = O, S and Y = Cl, Br). The calculated orbital energies agree very well with reported experimental ionization energies. The molecular orbital orderings obtained coincide with recent experimental orbital assignments. The results are also compared with previous ab initio and semiempirical calculations for OPCl3, OPBr3, SPCl3, and SPBr3 molecules. The comparison indicates that the present results show improved agreement with experiment and clarify certain ambiguities in the earlier assignments.  相似文献   

10.
Specific short contacts are important in crystal engineering. Hydrogen bonds have been particularly successful and together with halogen bonds can be useful for assembling small molecules or ions into crystals. The ionic constituents in the isomorphous 3,5‐dichloropyridinium (3,5‐diClPy) tetrahalometallates 3,5‐dichloropyridinium tetrachloridozincate(II), (C5H4Cl2N)2[ZnCl4] or (3,5‐diClPy)2ZnCl4, 3,5‐dichloropyridinium tetrabromidozincate(II), (C5H4Cl2N)2[ZnBr4] or (3,5‐diClPy)2ZnBr4, and 3,5‐dichloropyridinium tetrabromidocobaltate(II), (C5H4Cl2N)2[CoBr4] or (3,5‐diClPy)2CoBr4, arrange according to favourable electrostatic interactions. Cations are preferably surrounded by anions and vice versa ; rare cation–cation contacts are associated with an antiparallel dipole orientation. N—H…X (X = Cl and Br) hydrogen bonds and X X halogen bonds compete as closest contacts between neighbouring residues. The former dominate in the title compounds; the four symmetrically independent pyridinium N—H groups in each compound act as donors in charge‐assisted hydrogen bonds, with halogen ligands and the tetrahedral metallate anions as acceptors. The M X coordinative bonds in the latter are significantly longer if the halide ligand is engaged in a classical X …H—N hydrogen bond. In all three solids, triangular halogen‐bond interactions are observed. They might contribute to the stabilization of the structures, but even the shortest interhalogen contacts are only slightly shorter than the sum of the van der Waals radii.  相似文献   

11.
Oxidative Addition of N‐chlorotriphenylphosphoraneimine onto Phosphorus(III) Chloride and Antimony(III) Chloride. Crystal Structures of (Cl3PNPPh3)2[PCl6][ClHCl], [SbCl4(HNPPh3)2][SbCl6], and [Sb(NPPh3)4][SbCl6] Phosphorus(III) chloride reacts with N‐chlorotriphenylphosphoraneimine, ClNPPh3, in CH2Cl2 solution strongly exothermically via oxidative addition to give (Cl3PNPPh3)2[PCl6][ClHCl] ( 1 ). As a by‐product, Ph3PNP(O)Cl2 can be obtained, which is formed from PCl3 and ClNPPh3 in the presence of POCl3. In contrast to these results, antimony(III) chloride reacts with ClNPPh3 in CH2Cl2 solution to give a mixture of the phosphoraneimine complex [SbCl4(HNPPh3)2][SbCl6] ( 2 ) and the phosphoraneiminato complex [Sb(NPPh3)4][SbCl6] ( 3 ). The complexes 1 ‐ 3 were characterized by IR spectroscopy and by single crystal X‐ray determinations. 1 : Space group C2/c, Z = 4, lattice dimensions at 193 K: a = 3282.0(2), b = 798.7(1), c = 1926.1(2) pm, β = 107.96(1)°, R1 = 0.0302. 1 contains [Cl3PNPPh3]+ cations with PN bond lengths of 152.5(2) and 160.9(2) pm, and a PNP bond angle of 140.5(1)°. 2 ·CH2Cl2: Space group , Z = 2, lattice dimensions at 193 K: a = 1031.2(1), b = 1448.3(2), c = 1811,4(2) pm, α = 70.96(1)°, β = 87.67(1)°, γ = 75.37(1)°, R1 = 0.0713. 2 ·CH2Cl2 contains cations [SbCl4(HNPPh3)2]+ with octahedrally coordinated Sb atom and the HNPPh3 ligand molecules being in trans‐position. Sb–N bond lengths are 207.6(6) and 209.3(6) pm, PN bond lengths 162.3(7) and 160.8(7), which approximately corresponds with double bonds. 3 ·0.5CH2Cl2: Space group P4/n, Z = 2, lattice dimensions at 193 K: a = b = 1678.8(1), c = 1244.3(1) pm, R1 = 0.0618. 3 ·0.5CH2Cl2 contains [Sb(NPPh3)4]+ cations with tetrahedrally coordinated Sb atom and short Sb–N bond lengths of 193.7(6) pm. The PN distances of the phosphoraneiminato ligands, (NPPh3)? with 156.5(6) pm, correspond with double bonds, the SbNP bond angles are 130.6(3)°.  相似文献   

12.
Technetium dimers Tc2(O2CCH3)4X2 (X =?Cl, Br) were synthesized and studied by X-ray Absorption Fine Structure spectroscopy (XAFS). EXAFS analysis gave for Tc2(O2CCH3)4Cl2: d Tc-Tc =?2.18(1) Å, d Tc–Cl =?2.43(1) Å and for Tc2(O2CCH3)4Br2: d Tc–Tc =?2.19(1) Å, d Tc-Br =?2.63(1) Å. The Tc Tc separations are in agreement with Raman studies while the Tc–X distances are somewhat larger. Comparison with other Tc(III) quadruply bonded dimers indicates that the carboxylate compounds exhibit larger Tc–Tc separations. The effect of the terminal ligand (nature and position) on the Tc–Tc separation is discussed.  相似文献   

13.
Structures of New Bis(pentafluorophenyl)halogeno Mercurates [{Hg(C6F5)2}3(μ‐X)] (X = Cl, Br, I) From the reactions of [PNP]Cl or [PPh4]Y (Y = Br, I) with Hg(C6F5)2 crystals of the composition [Cat][{Hg(C6F5)2}3X] (Cat = PNP, X = Cl ( 1 ); Cat = PPh4, X = Br ( 2 ), I ( 3 )) are formed. 1 crystallizes in the triclinic space group P1¯, 2 and 3 crystallize isotypically in the monoclinic space group C2/c. In the crystals the halide anions are surrounded by three Hg(C6F5)2 molecules. The reaction of [PPh4]Br with Hg(C6F5)2 under slightly changed conditions gives the compound [PPh4]2[{Hg(C6F5)2}3(μ‐Br)][{Hg(C6F5)2}2(μ‐Br)] ( 4 ).  相似文献   

14.
Preparation and Crystal Structure of (NH4)2[V(NH3)Cl5]. The Crystal Chemistry of the Compounds (NH4)2[V(NH3)Cl5], [Rh(NH3)5Cl]Cl2, and M2VXCl5 with M = K, NH4, Rb, Cs and X ? Cl, O (NH4)2[V(NH3)Cl5] crystallizes like [Rh(NH3)5Cl]Cl2 in the orthorhombic space group Pnma with Z = 4. The compounds are built up by isolated NH4+ or Cl? and complex MX5Y ions. The following distances have been observed: V? N: 213.8, V? Cl: 235.8–239.1, Rh? N: 207.1–208.5, Rh? Cl: 235.5 pm. Both structures differ from the K2PtCl6 type mainly in the ordering of the MX5Y polyhedra. The compounds M2VCl6 and M2VOCl5 with M = K, NH4, Rb, and Cs crystallize with exception of the orthorhombic K2VOCl5 in the K2PtCl6 type. The ordering of the MX5Y polyhedra in the compounds (NH4)2[V(NH3)Cl5], [Rh(NH3)5Cl]Cl2 and K2VOCl5 enables a closer packing.  相似文献   

15.
NaSbF3NO3·H2O compound has been isolated in the SbF3NaNO3H2O system. The crystal structure was determined by X-ray diffraction on a single crystal. The final R factor is 0.044. The structure is compared with those of NaSbF3X·H2O (X = Cl, Br). The hydrogen bonds OH…X (X = Cl, Br, NO3) form the subject of a vibrational spectroscopic study.  相似文献   

16.
The gas‐phase nucleophilic substitution reactions at saturated oxygen X? + CH3OY (X, Y = Cl, Br, I) have been investigated at the level of CCSD(T)/6‐311+G(2df,p)//B3LYP/6‐311+G(2df,p). The calculated results indicate that X? preferably attacks oxygen atom of CH3OY via a SN2 pathway. The central barriers and overall barriers are respectively in good agreement with both the predictions of Marcus equation and its modification, respectively. Central barrier heights (ΔH and ΔH) correlate well with the charges (Q) of the leaving groups (Y), Wiberg bond orders (BO) and the elongation of the bonds (O? Y and O? X) in the transition structures. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

17.
The potential functions of internal rotation around the Csp 2-X bonds in the CH2 = CHXCH3 molecules (X = O, S, Se) were determined by MP2/6-31G* and MP2/6-31G** calculations. The stationary points were identified by solution of vibrational problems. The rotation barriers were evaluated taking into account the zero-point vibration energy. The intramolecular interactions were considered in terms of the method of natural bond orbitals. The degrees of hybridization, energies, and populations of the orbitals of the lone electron pairs of the O, S, and Se atoms, the energies of their donor-acceptor interaction with the antibonding * and * orbitals of the double bond, and the natural atomic charges in various conformations were determined.  相似文献   

18.
The MeCOCH2CMe2 ligand in X3SnCMe2CH2COMe ( 2 ; X = halide) acts as a C,O‐chelating group both in the solid state and in non‐coordinating solutions. The intramolecular Sn? O bond lengths in trigonal bipyramidal 2 (X = Cl and I), as determined by X‐ray crystallography, indicate that the stronger interaction occurs in 2 X = Cl. Comparisons with the Sn? O bond lengths in the estertin trihalides, X3SnCH2CH2CO2R ( 1 ; R = Me), suggest that the latter form stronger chelates than do 2 . In chlorocarbon solution, 2 (X = Cl, I) undergoes exchange reactions, as shown by NMR spectra, to give all possible halide derivatives, ∑(ClnI3?nSnCMe2CH2COMe) (n = 0–3). Various ab initio calculations on 2 and X3SnCH2CH2COMe ( 3 ) have been carried out. Comparisons of the theoretical and experimental structures of 2 for X = Cl or I are reported. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
The crystal and molecular structures of [Cu(phen)3] Cl2 · CH2Cl2.9H2O (PHEN= 1, 10‐pbenanthroline) have been determined by X‐ray crystallography. The complex crystallizes in triclinic system, space group P1, with lattice parameters a = 1.26000(3), b = 1.37525(4), c = 1.42750(3)nm, α = 85.2970(1),β = 66.8400(1), γ= 83.09(1)°, and Z = 2. The coordinated cations contain a six‐coordinated copper atom chelated by three PHEN ligands, and the Jahn‐Teller effect of the Cu(II) ion results in a distorted octahedral arrangement with the six Cu? N distances ranging from 0.2112(6) to 0.2265(7) nm. In addition to the copper coordinated cation, there are two chloride ions, one dichloromethane solvate and nine water molecules in its asymmetric unit. In the solid state, the title compound forms three dimensional network structures through hydrogen bonds. The intermolecular hydrogen bonds connect the [Cu(phen)3]2+, chloride ion, dichloromethane solvate and H2O moieties altogether.  相似文献   

20.
Formation and N.M.R.-Spectroscopic Characterization of Alk-(ar-)oxy Derivatives of Trichlorophosphazene-N-phosphoryldichloride, Cl3P?N? P(O)Cl2, Imido- and N-Methylimidodiphosphoryltetrachloride, Cl2P(O)NHP(O)Cl2 and Cl2P(O)N(CH3)P(O)Cl2 The ester chlorides and esters P2NOCl5?x(OR)x (x = 1?5), P2(NH)O2Cl4?x(OR)x (x = 1–4) and P2(NCH3)O2Cl4–x(OR)x (x = 1–4) derived from the title compounds by substitution of chlorine atoms by alk- or aroxy groups are characterized by their 31P-n.m.r. data. The possibilities for forming these compounds by alcoholysis, chloridolysis, dealkylation and P? N-bond formation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号