首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Batch adsorption experiments were carried out, aiming to remove lead ions from aqueous solutions and water samples using powdered marble wastes (PMW) as an effective inorganic sorbent, which is cheap, widespread, and may represent an environmental problem. The main parameters (i.e., solution pH, sorbent and lead concentration, shaking time, and temperature) influencing the sorption process, were investigated. The results obtained showed that the sorption of Pb2+ ions onto PMW was fitted well with the linear Freundlich and Langmuir models over the concentration range studied. From the Dubinin–Radushkevick (D–R) isotherm model it was found that the adsorption was chemical in nature. Thermodynamic parameters viz. the change in Gibbs free energy change (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) were also calculated. These parameters indicated that the adsorption process of Pb2+ ions on PMW was spontaneous and endothermic in nature. Under the optimum experimental conditions employed, the removal of about 100% of Pb2+ ions was attained. The procedure was successfully applied to remove lead ions from aqueous and different natural water samples. Moreover, the adsorption mechanism is suggested.  相似文献   

2.
Reversed-phase high-performance liquid chromatographic methods were developed for the separation of enantiomers of eleven unnatural β2-amino acids on a new chiral stationary phase, using the 11-methylene-unit spacer of aminoundecylsilica gel for the bonding of (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid as selector. The nature and concentration of the acidic and organic modifiers, the pH, the mobile phase composition, and the structures of the analytes substantially influenced the retention and resolution. Separations were carried out at constant mobile phase compositions in the temperature range 7–40 °C and the changes in enthalpy, Δ(ΔH°), entropy, Δ(ΔS°), and free energy, Δ(ΔG°) were calculated. The elution sequence was determined in some cases: the S enantiomers eluted before the R enantiomers.  相似文献   

3.
Chromium(III) sorption on macroporous strong cation exchanger Amberlyst‐15 (H+) was studied as a function of time and temperature. The rate constant values for chromium(III) sorption were calculated both for film and particle diffusion processes. The temperature was found to have a positive effect on both the diffusional processes. From the rate constant values, the energy of activation was calculated using the well‐known Arrhenius equation. The high values of energy of activation confirmed the film diffusional nature of the process. Equilibrium data were explained with the help of Langmuir equation. Various thermodynamic parameters (ΔH?, ΔS? and ΔG?) from chromium(III) exchange on the resin were calculated. The ΔG? values were found to be negative while both the ΔH? and ΔS? were positive.  相似文献   

4.
The sorption of Cd(II) from aqueous solution on MnO2 was investigated under ambient conditions. Experiments were carried out as a function of contact time, solid content, pH, ionic strength, foreign ions, fulvic acid and temperature. The results indicated that the sorption of Cd(II) was strongly dependent on pH and ionic strength. At low pH, the sorption of Cd(II) was dominated by outer-sphere surface complexation and ion exchange with Na+/H+ on MnO2 surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. The Langmuir, Freundlich and Dubinin–Radushkevich models were used to simulate the sorption isotherms at three different temperatures. The thermodynamic data (ΔG 0, ΔS 0, ΔH 0) calculated from the temperature dependent sorption isotherms suggested that the sorption of Cd(II) on MnO2 was an spontaneous and endothermic process.  相似文献   

5.
Sorption mechanism of Fe (III), Cd (II) and Na (I) on cation exchange resins in H-form was investigated from aqueous and aqueous-detergent media by a modified limited batch technique. The cation exchange studies involved the sorption of metallic ions onto a Lewatite S-100 exchanger. Effects of mesh size of the exchanger, temperature and detergent on the exchange rate have been investigated. The mechanisms of cation exchanges have been determined in the temperature range of 25–65°C. In all cases of the reactions ions, diffusion is found to be the rate determining step in the exchange process. The exchange rate in the exchange process was found to increase with a decrease of particle size and an increase of temperature. However, in case of the influence of detergent, the exchange reactions are dependent on the reaction technique. The effective-diffusion coefficients have been evaluated at three different temperatures. The energy barriers (ΔEa), entropies of activation (ΔS*), (ΔH*) and (ΔG*) for various sorption systems have also been calculated. The results are discussed in terms of size and valences of the counter ions. No change in the internal structure of Lewatite S-100 is inferred due to the sorption of counter ions.  相似文献   

6.
Surface Characterization of Sepiolite by Inverse Gas Chromatography   总被引:1,自引:0,他引:1  
Inverse gas chromatography (IGC) was applied to characterize the surface of sepiolite. The adsorption thermodynamic parameters (the standard enthalpy (ΔH 0), entropy (ΔS 0) and free energy of adsorption (ΔG 0)), the dispersive component of the surface energy (γ S d ), and the acid/base character of sepiolite surface were estimated by using the retention time of different non-polar and polar probes at infinite dilution region. The specific free energy of adsorption (ΔG sp ), the specific enthalpy of adsorption (ΔH sp ), and the specific entropy of adsorption (ΔS sp ) of polar probes on sepiolite were determined. ΔH sp were correlated with the donor and modified acceptor numbers of the probes to quantify the acidic K A and the basic K D parameters of the sepiolite surface. The values obtained for the parameters K A and K D indicated an acidic character for sepiolite surface.  相似文献   

7.
In this study activated carbon was used for the removal of thiram from aqueous solutions. Adsorption experiments were carried out as a function of time, initial thiram concentration and temperature. Equilibrium data fitted well to the Freundlich and Langmuir equilibrium models in the studied concentration range. Adsorption kinetics followed a pseudo second‐order kinetic model rather than pseudo first‐order model. The results from kinetic experiments were used to describe the adsorption mechanism. Both boundary layer and intraparticle diffusion played important role in the adsorption mechanism of thiram. Thermodynamic parameters (ΔG0, ΔH0, and ΔS0) were determined and the adsorption process was found to be an endothermic one. The negative values of ΔG0 at different temperatures were indicative of the spontaneity of the adsorption process.  相似文献   

8.
Molar conductance of lithium acetate, sodium acetate and potassium acetate were studied in aqueous 2-butanol solutions with an alcohol mass fraction (w2) of 0.70, 0.80 and 0.90 at 298.15, 303.15 and 308.15 K. The conductance data were analyzed with the Fuoss conductance-concentration equation to evaluate the limiting molar conductances (Λ0), association constants (KA,c) and cosphere diameter (R) for ion-pair formation. Gibbs energy (ΔG0), enthalpy (ΔH0) and entropy (ΔS0) for ion-association reaction were derived from the temperature dependence of KA,c. Activation energy for ionic movement (ΔH#) was derived from the temperature dependence of Λ0. Based on the composition dependence of Walden products (Λ0η0) and different thermodynamic properties (ΔG0H0, ΔS0 and ΔH#), the influence of the solvent composition on ion-association and solvation behavior of ions were discussed in terms of ion-solvent, ion-ion interactions and the structural changes in the mixed solvent media.  相似文献   

9.
In this study, natural halloysite nanotubes (HNTs) were applied to remove radiocobalt from wastewaters under various environmental parameters such as contact time, pH, ionic strength, foreign ions and temperature by using batch technique. The results indicated that the sorption of Co(II) on HNTs was dependent on ionic strength at pH < 8.5 and independent of ionic strength at pH > 8.5. Langmuir and Freundlich models were applied to simulate the sorption isotherms of Co(II) at three different temperatures of 293, 313 and 333 K. Langmuir model fitted the sorption isotherms of Co(II) on HNTs better than Freundlich model. The thermodynamic parameters (ΔG 0, ΔS 0 and ΔH 0) calculated from the temperature-dependent sorption isotherms manifested that the sorption of Co(II) on HNTs was an endothermic and spontaneous process. The sorption of Co(II) was dominated by outer-sphere surface complexation or ion exchange at low pH, whereas inner-sphere surface complexation or precipitation was the main sorption mechanism at high pH. The experimental results show that HNTs have good potentialities for cost-effective disposal of cobalt-bearing wastewaters.  相似文献   

10.
Abstract

In this study the effect of the dose and particle size of the adsorbent, initial dye concentration, initial pH, contact time and temperature were investigated for the removal of by means of fly ash (FA) methylene blue (MB) from an aqueous solution. The FA dose was found to be 2.0?g and the under 270 mesh sized particles were found to be effective particles for adsorption. The adsorption process reached its maximum value at 0.5?mg/L dye concentration and attained equilibrium within 10?minutes. The adsorption isotherm was found to follow the Langmuir model. The estimated adsorption free energy (ΔGo), enthalpy change (ΔHo), and entropy change (ΔSo) for the adsorption process were ?37.77?kJ mol?1, ?13.44?kJ mol?1 and 122 J mol?1 K?1 respectively at 298 K. The maximum adsorption capacity is 0,12?mg g?1 at 298 K and 0,07?mg g?1 at 398 K. The adsorption process was exothermic, feasible and spontaneous. The positive value of ΔSo shows the affinity of FA for MB while the low value of ΔGo suggests a physical adsorption process.  相似文献   

11.
Cr (III) sorption on microporous strong cation exchanger Amberlite.120 (Na+) is studied as a function of time and temperature. The pH changes show the co-sorption of H+ ions along with the chromium. The rate constant values for Cr (III) sorption are calculated for both film and particle diffusion processes. However, the particle diffusion is found to be more dominant than the film diffusion. The temperature is found to have a positive effect on both the diffusional processes. The low values of energy of activation also confirm the diffusional nature of the process. Equilibrium data are explained with the help of Langmuir equation. Various thermodynamic parameters (??H, ??S and ??G) for Cr (III) exchange on the resin are calculated. The ??G values are found to be negative, while both the ??H and ??S values obtained are positive.  相似文献   

12.
Large deposits of coal are abundantly available in Pakistan. An attempt has been made to check its efficacy for the cobalt ions from aqueous solutions in order to exploit the locally available naturally occurring cheaper material for the decontamination/removal of metal ions from nuclear and industrial effluents. The adsorption behavior of cobalt ions on coal powder has been studied as a function of various physicochemical parameters i.e., stirring speed, shaking time, pH, concentration of cobalt ions, temperature, etc. Conditions for the uptake of cobalt ions were established. Adsorption dynamics models such as intra-particle diffusion model, pseudo-first order kinetic model (Lagergren’s equation) and pseudo-second order kinetic model were applied to the adsorption data to elucidate the adsorption process and its mechanism. Results reveal that the adsorption mechanism is predominantly diffusion and both intra-particle and boundary layer diffusion seem significant in the rate controlling step. The adsorption process is best accounted for using pseudo second order kinetic model and the overall rate of adsorption process appears to be controlled by more than one step, namely the external mass transfer and intra-particle diffusion mechanism. The existence of two slopes in the Freundlich plot also confirms the surface diffusion and intra-particle diffusion modes of adsorption. The Langmuir isotherm equation was obeyed well in the whole range of cobalt ions concentration with high value of correlation coefficient (r 2  = 0.999). The adsorption energy (E a) calculated from D–R isotherm was 6.756 kJ/mol indicating physical nature of adsorption. The adsorption of cobalt ions increased with the increase of temperature and thermodynamic parameters such as ΔH, ΔS and ΔG were calculated. Results suggested that the cobalt ions adsorption on coal powder is endothermic (ΔH 33.90 kJ/mol) and spontaneous (negative ΔG values) process. The adsorption of other metal ions on coal powder was studied at optimized condition for cobalt ions to check its selectivity. Consequently, cobalt ions can be removed from Zr, Ru Eu, Er, Sm, Gd, Dy, Ce, U, and Th ions, where as Cs, Cr and Sr ions reduces the adsorption of cobalt ions by co-adsorption and their reducing affect is in the order of Sr > Cr > Cs.  相似文献   

13.
In this study, biosorption of cobalt(II), chromium(III), cadmium(II), and lead(II) ions from aqueous solution was studied using the algae nonliving biomass (Neochloris pseudoalveolaris, Np) as natural and biological sorbents. The effect of pH, contact time, temperature, and metal concentration on the adsorption capacity of metal ions was investigated. The maximum adsorption capacities for Co(II), Cr(II), Cd(II), and Pb(II) were found to be 20.1, 9.73, 51.4 and 96.2 mg/g at the optimum conditions, respectively. The experiments showed that when pH increased, an increase in the adsorption capacity of the biomass was observed too. The kinetic results of adsorption obeyed a pseudo second-order model. Freundlich and Langmuir isotherm models were applied to experimental equilibrium data of metal ions adsorption and the value of R L for Pb(II), Cb,(II), Co(II), and Cr(III) was found to be 0.376, 0271, 0872, and 096, respectively. The thermodynamic parameters related to the adsorption process such as E a , ΔG 0, ΔH 0, and ΔS 0 were calculated. ΔH 0 values (positive) showed that the adsorption mechanism was endothermic. Weber-Morris and Urano-Tachikawa diffusion models were also applied to experimental equilibrium data. The algae biomass was effectively used as a sorbent for the removal of metal ions from aqueous solutions.  相似文献   

14.
A new preconcentration method is presented for lead on TAN‐loaded polyurethane foam (PUF) and its measurement by differential pulse anodic stripping voltammetry (DPASV). The optimum sorption conditions of 1.29 × 10?5 M solution of Pb(II) ions on TAN‐loaded PUF were investigated. The maximum sorption was observed at pH 7 with 20 minutes equilibrated time on 7.25 mg mL?1 of TAN‐loaded foam. The kinetic study indicates that the overall sorption process was controlled by the intra‐particle diffusion process. The validity of Freundlich, Langmuir and Dubinin ‐ Radushkevich adsorption isotherms were tested. The Freundlich constants 1/n and KF are evaluated to be 0.45 ±0.04 and (1.03 +0.61) × 10?3 mol g?1, respectively. The monolayer sorption capacity and adsorption constant related to the Langmuir isotherm are (1.38 ± 0.08) × 10?5 mol g?1 and (1.46 ± 0.27) × 105 L mol?1, respectively. The mean free energy of Pb(II) ions sorption on‐TAN loaded PUF is 11.04 ± 0.28 kJ mol?1 indicating chemisorption phenomena. The effect of temperature on the sorption yields thermodynamics parameters of ΔH, ΔS and ΔG at 298 K that are 15.0 ± 1.4 kJ mol?1, 74 ±5 J mol?1 K?1 and ‐7.37 ± 0.28 kJ mol?1, respectively. The positive values of enthalpy (ΔH) and entropy (ΔS) indicate the endothermic sorption and stability of the sorbed complexes are entropy driven. However, the negative value of Gibb's free energy (ΔG) indicates the spontaneous nature of sorption. On the basis of these data, the sorption mechanism has been postulated. The effect of different foreign ions on the sorption and desorption studies were also carried out. The method was successfully applied for the determination of lead from different water samples at ng levels.  相似文献   

15.
Titanium dioxide nanoparticles (NPs) were employed for the sorption of Tl(III) ions from aqueous solution. The process was studied in detail by varying the sorption time, pH, Tl(III) concentration, temperature, and amount of sorbent. The sorption was found to be fast and to reach equilibrium within 2 min, to be less efficient at low pH values, and to increase with pH and temperature. The sorption fits the Langmuir equation and follows a pseudo second order model. The mean energy of the sorption is approximately 15 kJ mol?1 as calculated from the Dubinin–Radushkevich isotherm. The thermodynamic parameters for the sorption were also determined, and the ΔH 0 and ΔG 0 values indicate endothermic behavior.  相似文献   

16.
Modelling of proton and metal exchange in the alginate biopolymer   总被引:1,自引:0,他引:1  
Acid–base behaviour of a commercial sodium alginate extracted from brown seaweed (Macrocystis pyrifera) has been investigated at different ionic strengths (0.1≤I/mol l?1≤1.0) and in different supporting electrolytes (Et4NI, NaCl, KCl, LiCl, NaCl+MgCl2), with the aim of examining the influence of ionic medium on the proton-binding capacity and of quantifying the strength of interaction with light metal ions in the perspective of speciation studies in natural aqueous systems. Potentiometric ([H+]-glass electrode) and titration calorimetric data were expressed as a function of the dissociation degree (α) using different models (Henderson–Hasselbalch modified, Högfeldt three parameters and linear equations). The dependence on ionic strength of the protonation constants was taken into account by a modified specific interaction theory model. Differences among different media were explained in terms of the interaction between polyanion and metal cations of the supporting electrolytes. Quantitative information on the proton-binding capacity, together with the stabilities of different species formed, is reported. Protonation thermodynamic parameters, at α=0.5, are log K H=3.686±0.005, ΔG 0=?21.04±0.03 kJ mol?1, ΔH 0=4.8±0.2 kJ mol?1 and TΔS 0=35.7±0.3 kJ mol?1, at infinite dilution. Protonation enthalpies indicate that the main contribution to proton binding arises from the entropy term. A strict correlation between ΔG and TΔS was found, TΔS=?9.5–1.73 ΔG. Results are reported in light of building up a chemical complexation model of general validity to explain the binding ability of naturally occurring polycarboxylate polymers and biopolymers. Speciation profiles of alginate in the presence of sodium and magnesium ions, naturally occurring cations in natural waters, are also reported.  相似文献   

17.
In this work, a naturally occurring illite was characterized by using FT-IR and XRD technique to determine its surface functional groups and crystal structure. Sorption of 60Co(II) on illite as a function of contact time, pH, ionic strength, foreign ions, humic substances and temperature was studied under ambient condition using batch technique. The results indicated that the sorption of 60Co(II) on illite is strongly affected by pH values (2–9) and ionic strength. A positive effect of humic substances on 60Co(II) sorption was found at pH < 7.0, whereas a negative effect was observed at pH > 7.0. At low pH, the sorption of 60Co(II) was dominated by outer-sphere surface complexation and ion exchange with Na+/H+ on illite surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. The Langmuir and Freundlich models were used to simulate the sorption isotherms of 60Co(II) at three different temperatures of 298.15, 323.15 and 343.15 K. The thermodynamic parameters (ΔH 0, ΔS 0 and ΔG 0) calculated from the temperature dependent sorption isotherms indicated that the sorption process of 60Co(II) on illite was endothermic and spontaneous.  相似文献   

18.
To probe the dependence of particle size on the safety of nitroamine explosives, coarse RDX and HMX were comminuted to nanometer particles by an improved superfine mill. Their thermolysis characteristics were studied by thermal analysis and described via calculating some thermodynamic and kinetic parameters such as the activation free-energy (ΔG ), activation enthalpy (ΔH ), activation entropy (ΔS ), apparent activation energy (E), critical temperature of thermal explosion (T b), and critical heating rate of thermal explosion ( $ ({\text{d}}T/{\text{d}}t)_{{T_{\text{b}} }} $ ). After comminuted, the values of T b and $ ({\text{d}}T/{\text{d}}t)_{{T_{\text{b}} }} $ were increased. However, the values of ΔH , ΔS , ΔG , and E for nanoexplosives were close to those of microexplosives, which mean decreasing particle size into nanometer did not distinctly influence the thermolysis characteristic of nitroamines. The safety of the nanoexplosives was practically assessed by testing their impact, friction, and shock sensitivities. Results indicated that nano nitroamines presented obviously higher safety than the micro-counterparts. Especially in Small Scale Gap Test, the shock sensitivity of nano-RDX and nano-HMX decreased by about 45 and 56% compared with that of micro-RDX and micro-HMX, respectively.  相似文献   

19.
Thermodynamic properties and equilibrium constant of reaction in nanosystems were analyzed theoretically. The effects of sizes of nano-CuO on thermodynamic properties and equilibrium constant were studied using the reaction of nano-copper oxide and sodium bisulfate as a system. The experimental results indicate that with the sizes of reactant decreasing, the molar Gibbs free energy (ΔrGm), the molar enthalpy (ΔrHm) and the molar entropy (ΔrSm) decrease, but the equilibrium constant (K) increases and there are linear trends between the reciprocal of sizes for nano-CuO and the values of ΔrGm, ΔrHm, ΔrSm and Ln K, which are in agreement with the theoretical analysis.  相似文献   

20.
A synthetic graft copolymer of cross-linked starch/acrylonitrile was used as an adsorbent for the removal of Cu(II) ions from an aqueous solution of copper nitrate hexahydrate Cu(NO3)2 · 6H2O at different temperatures and fixed pH. The amount adsorbed increased with increasing concentration of Cu(II) ions and decreasing temperature. The length of time taken to reach equilibrium of the adsorption of Cu(II) ions was the same at all temperatures tested. Kinetics studies showed that the adsorption process obeyed first-order reversible kinetics and the adsorption isotherms followed the Freundlich model. Furthermore, the thermodynamic parameters, i.e. standard free energy (ΔG), standard enthalpy (ΔH), and standard entropy (ΔS), of the adsorption process were calculated and the results are discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号