首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Molecular interaction between hydrogen molecules and B2H4M (M=Li, Be, Sc, Ti, V) complexes has been studied using the DFT method (M06 functional) and 6-311++G** basis set. The hydrogen uptake capacity of the complexes considered is higher than the target set by the US Department of Energy (5.5 wt% by 2020). The metal atom bound strongly to the B2H4 substrate. Adsorption of molecular hydrogen on Be-, Ti-, and V-decorated complexes is thermodynamically possible for all the pressures and temperatures considered whereas it is unfavorable for Li-decorated complexes for all the pressure and temperatures. For the Sc-doped complexes, adsorption of molecular hydrogen is favorable below 330 K and entire pressure range considered. All the H2 adsorbed complexes are kinetically stable. For all the complexes, the interaction between the inorganometallic complexes and the H2 molecules adsorbed is attractive whereas that between adsorbed H2 molecules is repulsive. We have also performed molecular dynamics simulations to confirm the same number of H2 molecule adsorption from the simulations and DFT calculations.  相似文献   

2.
The noble gas binding ability of CN3Be3+ clusters was assessed both by ab intio and density functional studies. The global minimum structure of the CN3Be3+ cluster binds with four noble‐gas (NG) atoms, in which the Be atoms are acting as active centers. The electron transfer from the noble gas to the Be atom plays a key role in binding. The dissociation energy of the Be? NG bond gradually increases from He to Rn, maintaining the periodic trend. The HOMO–LUMO gap, an indicator for stability, gives additional insight into these NG‐bound clusters. The temperature at which the NG‐binding process is thermodynamically feasible was identified. In addition, we investigated the stability of two new neutral NG compounds, (NG)BeSe and (NG)BeTe, and found them to be suitable candidates to be detected experimentally such as (NG)BeO and (NG)BeS. The dissociation energies of the Be? NG bond in monocationic analogues of (NG)BeY (Y=O, S, Se, Te) were found to be larger than in the corresponding neutral counter‐parts. Finally, the higher the positive charge on the Be atoms, the higher the dissociation energy for the Be? NG bond becomes.  相似文献   

3.
Density functional theory (DFT) and Fourth‐order Möller–Plesset (MP4) perturbation theory calculations are performed to examine the possibility of hydrogen storage in V‐capped VC3H3 complex. Stability of bare and H2 molecules adsorbed V‐capped VC3H3 complex is verified using DFT and MP4 method. Thermo‐chemistry calculations are carried out to estimate the Gibbs free corrected averaged H2 adsorption energy which reveals whether H2 adsorption on V‐capped VC3H3 complex is energetically favorable, at different temperatures. We use different exchange and correlation functionals employed in DFT to see their effect on H2 adsorption energy. Molecular dynamic (MD) simulations are performed to confirm whether this complex adsorbs H2 molecules at a finite temperature. We elucidate the correlation between H2 adsorption energy obtained from density functional calculations and retaining number of H2 molecules on VC3H3 complex during MDs simulations at various temperatures. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

4.
Using density functionals theory, we show that gravimetric hydrogen uptake of C2H4Ti complex and its cation, C2H4Ti+, differ by about 2 wt%. Six and five hydrogen molecules are found to be adsorbed on C2H4Ti+ and C2H4Ti complexes thereby showing a hydrogen-uptake capacity of 13.74 and 11.72 wt%, respectively. All hydrogen molecules are adsorbed in molecular form on C2H4Ti+ ion with an increase in metal bond strength, whereas in some cases, the hydrogen molecules are found to be dissociated on C2H4Ti neutral complex. The uptake capacity of neutral C2H4Ti complex shown in this work is in excellent agreement with that reported experimentally, Phillips and Shivaram (Phys Rev Lett 100:105505, 2008). The H2 adsorption energy and its dependence on exchange and correlation functions in density functionals method were illustrated. Even after the adsorption of maximum number of hydrogen molecules on C2H4Ti and C2H4Ti+ complexes, Ti and Ti+ remain strongly bound to C2H4 substrate.  相似文献   

5.
Ab initio calculations at the MP2 level of theory disclose the conceivable existence of neutral complexes containing four or five distinct noble gases (Ng) each bound to a distinct Be‐atom. These multicenter polynuclear Ng molecules are formally obtained by replacing the H‐atoms of CH4 and but‐2‐yne with ? NBeNg moieties, which behave as independent monovalent ‘functional groups’. Our investigated complexes include the five homotetranuclear [C(NBeNg)4] complexes 1 – 5 (Ng=He? Xe), the five heterotetranuclear complexes [CN4Be4(He)(Ne)(Ar)(Kr)] ( 6 ), [CN4Be4(He)(Ne)(Ar)(Xe)] ( 7 ), [CN4Be4(He)(Ne)(Kr)(Xe)] ( 8 ), [CN4Be4(He)(Ar)(Kr)(Xe)] ( 9 ), and [CN4Be4(Ne)(Ar)(Kr)(Xe)] ( 10 ), and the heteropentanuclear complex [HC4N5Be5(He)(Ne)(Ar)(Kr)(Xe)] ( 11 ). We also investigated the five model complexes [H3CNBeNg] (Ng=He? Xe) containing a single ? NBeNg moiety. The geometries and vibrational frequencies of all these species, invariably characterized as minimum‐energy structures, were computed at the MP2(full)/6‐31G(d,p)/SDD level of theory, and their stability with respect to the loss of the various Ng‐atoms was evaluated by single‐point calculations at the MP2(full)/6‐311G(d)/SDD level of theory. The beryllium‐Ng binding energies range from ca. 17 (Ng=He) to ca. 63 (Ng=Xe) kJ/mol, and the results of natural‐bond‐orbital (NBO) and atoms‐in‐molecules (AIM) analysis reveal that the Be? Ng interaction is essentially electrostatic for helium, neon, argon, and krypton, and has probably a small covalent contribution for xenon.  相似文献   

6.
The systems Be2H+ and Be2H? have been investigated for different nuclear positions, the H atom being situated between the Be atoms, taking all electrons into account, using the Allgemeines Programmsystem/SCF –MO –LC (LCGO ) Verfahren. For Be2H+ there results a minimum total energy of ?29.3824 a.u. in the linear symmetric configuration with a bond distance of 1.609 Å. The ionization energy was estimated to be 12.37 eV. The formation of Be2H+ can be interpreted as an addition of Be to BeH+ with an exotherm heat of reaction of 7.0 kcal/mole. The electron affinity of BeH+ (ionization energy of BeH) was estimated to be approximately 7.24 eV. All force constants of Be2H+ and BeH+ have been computed. Using SCF results, the Be2H? was found to be unstable.  相似文献   

7.
The adsorption of small charged and neutral molecules on silica supports was modelled using perturbative post-Hartree–Fock quantum chemical methods (MP2 and MP4). The simplest spherosiloxane compound (H4Si4O6) was used to mimic the surface while several molecules (namely CH4, NH 4 + , NH3, OH 3 + H 3 + ) were considered as adsorbed species. Direct sticking of the molecules on one of the (Si–O)3 ring leads to very different binding energies for cations (more than 11 kcal/mol) and neutral molecules (a few kcal/mol). These results indicate a dominant strong ion–multipole interaction for the first ones and a weak dispersion-type interaction for the latter. If the spherosiloxane cluster is screened by a mantle of accreted dust as it is the case in interstellar environment, the value of the binding energies, computed using the continuum dielectric theory, are predicted to be significantly reduced.  相似文献   

8.
Isolated Be2 is a typical example of a weakly bound system, but interaction with other systems may give rise to surprising bonding features. The interactions between Be2 and a set of selected neutral CnHn (n=2–8) π-systems have been analyzed through the use of G4 and G4MP2 ab initio methods, along with multireference CASPT2//CASPT2 calculations. Our results systematically show that the CnHn−Be2−CnHn clusters formed are always very stable. However, the nature of this interaction is completely different when the π-system involved is a closed shell species (n=2, 4, 6, 8), or a radical (n=3, 5, 7). In the first case, the interaction does not occur with the π-system as a whole, but with specific C centers yielding rather polar but strong C−Be bonds. Nonetheless, although the Be−Be distances in these complexes are similar to the ones in compounds with ultra-strong Be−Be bonds, a close examination of their electron density distribution reveals that no Be−Be bonds exist. The situation is totally different when the interaction involves two π-radicals, CnHn−Be2−CnHn (n=3, 5, 7). In these cases, a strong Be−Be bond is formed. Indeed, even though Be is electron deficient, the Be2 moiety behaves as an efficient electron donor towards the two π-radicals, so that the different CnHn−Be2−CnHn (n=3, 5, 7) clusters are the result of the interaction between Be22+ and two L anions. The characteristics of these two scenarios do not change when dealing with bicyclic π-compounds, such as naphthalene and pentalene, because the interaction with the Be2 moiety is localized on one of the unsaturated cycles, the other being almost a spectator.  相似文献   

9.
The water exchange reaction of BeII complexes in the series [Be(X)(H2O)3]+ (X = H, F, Cl, Br, OH, CN, NCNCN) was studied by DFT calculations (RB3LYP/6‐311+G**) and identified as an associative interchange mechanism. The influence of X on the activation energies was examined and found to be largely negligible, thus making them all act as spectator ligands. The energies for addition of a fourth water molecule, representing the second coordination sphere, were approximately half of that found for similar dicationic complexes and close to that found for monocationic species like [Li(H2O)4]+.  相似文献   

10.
The equilibrium constants of the hydrogen-bonding interactions between the tetraaqua-beryllium(II) ion ([Be(H2O)4]2+) and water in the second solvation sphere were determined from the dependence of the 9Be NMR chemical shift (δBe) on the water concentration (C W) in propiononitrile (PN). The 9Be NMR line assigned to [Be(H2O)4]2+ is downfield shifted with the increasing C W, and the change in δBe as a function of C W is explained in terms of a two-step hydrogen-bonding interaction to form [Be(H2O)4](H2O) n 2+ (n = 1, 2). Molecular orbital calculations for [Be(H2O)4](H2O) n 2+ (n = 0?2) revealed that the electron density on the Be(II) ion increases with an increase in n due to an enhanced polarization of the bound water molecules accompanied by the hydrogen bonding in the second solvation sphere. The observed downfield shift of δBe is interpreted as a significant compensation of the diamagnetic upfield shift by the paramagnetic contribution due to the mixing of the vacant s and p orbitals of Be with the σ-type lone-pair orbitals of the coordinating water molecules.  相似文献   

11.
Single crystals of [Be33‐O)3(MeCN)6{Be(MeCN)3}3](I)6·4CH3CN ( 1 ·4CH3CN) were obtained in low yield by the reaction of beryllium powder with iodine in acetonitrile suspension, which probably result from traces of beryllium oxide containing the applied beryllium metal. The compound 1 ·4CH3CN forms moisture sensitive, colourless crystal needles, which were characterized by IR spectroscopy and X‐ray diffraction (Space group Pnma, Z = 4, lattice dimensions at 100(2) K: a = 2317.4(1), b = 2491.4(1), c = 1190.6(1) pm, R1 = 0.0315). The hexaiodide complex cation 1 6+consists of a cyclo‐Be3O3 core with slightly distorted chair conformation, stabilized by coordination of two acetonitrile ligands at each of the beryllium atoms and by a {Be(CH3CN)3}2+ cation at each of the oxygen atoms. This unique coordination behaviour results in coplanar OBe3 units with short Be–O distances of 155.0 pm and 153.6 pm on average of bond lengths within the cyclo‐Be3O3 unit and of the peripheric BeO bonds, respectively. Exposure of compound 1 ·4CH3CN to moist air leads to small orange crystal plates of [Be(H2O)4]I2·2CH3CN ( 3 ·2CH3CN). According to the crystal structure determination (Space group C2/c, Z = 4, lattice dimensions at 100(2) K: a = 1220.7(1), b = 735.0(1), c = 1608.5(1) pm, β = 97.97(1)°, R1 = 0.0394), all hydrogen atoms of the dication [Be(H2O)4]2+ are involved to form O–H ··· N and O–H ··· I hydrogen bonds with the acetonitrile molecules and the iodide ions, respectively. Quantum chemical calculations (B3LYP/6‐311+G**) at the model [Be33‐O)3(HCN)6{Be(HCN)3}3]6+ show that chair and boat conformation are stable and that the distorted chair conformation is stabilized by packing effects.  相似文献   

12.
We present a systematic comparison of the correlation contribution at the level of the second-order polarization propagator approximation (SOPPA ) and MP 2 to the static dipole polarizability of (1) Be, BeH?, BH, CH+, MgH?, AIH, SiH+, and GeH+; (2) BH3, CH4, NH3, H2O, HF, BF, and F2; and (3) N2, CO, CN?, HCN, C2H2, and HCHO . Fairly extended basis sets were used in the calculations. We find that the agreement with experimental values is improved in SOPPA and MP .2 over the results at the SCF level. The signs and magnitudes of the correlation contribution in SOPPA are similar to those obtained in analytical derivative MP 2 calculations. However, it is not possible to say, in general, which method gives the largest correlation contribution or the best agreement with experiment, nor is it possible to make a priori prediction of the sign of the correlation contribution. For the first group of molecules, which have a quasi-degenerate ground state, additional CCDPPA and CCSDPPA calculations were performed and compared with polarizabilities obtained as analytical/numerical derivatives of the CCD and CCSD energies. The CCSDPPA results were found to be in better agreement with other calculations than were the SOPPA results, demonstrating the necessity of using methods based on infinite-order perturbation theory for these systems. © 1994 John Wiley & Sons, Inc.  相似文献   

13.
The activation of adsorbed CO is an important step in CO hydrogenation. The results from TPSR of pre-adsorbed CO with H2 and syngas suggested that the presence of H2 increased the amount of CO adsorption and accelerated CO dissociation. The H2 was adsorbed first, and activated to form H* over metal sites, then reacted with carbonaceous species. The oxygen species for CO2 formation in the presence of hydrogen was mostly OH^*, which reacted with adsorbed CO subsequently via CO^*+OH^* → CO2^*+H^*; however, the direct CO dissociation was not excluded in CO hydrogenation. The dissociation of C-O bond in the presence of H2 proceeded by a concerted mechanism, which assisted the Boudourd reaction of adsorbed CO on the surface via CO^*+2H^* → CH^*+OH^*. The formation of the surface species (CH) from adsorbed CO proceeded as indicated with the participation of surface hydrogen, was favored in the initial step of the Fischer-Tropsch synthesis.  相似文献   

14.
The electron impact mass spectra of eight polynuclear beryllium complexes Be4O(RCO2)6 (R?H, CH3, C2H5) and Be4O(RCO2)5OR′ (R?CH3, R′?H, CH3, C2H5, C3H7; R?C2H5, R′?C2H5) are reported. The major fragmentations involve the elimination of (RCO)2O (RCOOR′) or Be(RCO2)2 (Be(RCO2)OR′) from the ions [M? L]+ and of {(R? H)CO}, (R′? H), H2O and BeO from the lighter ions. The fragmentation patterns are practically independent of the organic groups present and can be rationalized by stereochemical considerations.  相似文献   

15.
The water exchange reactions in aquated Li+ and Be2+ ions were investigated with density functional theory calculations performed using the [Li(H2O)4]+·14H2O and [Be(H2O)4]2+·8H2O systems and a cluster‐continuum approach. A range of commonly used functionals predict water exchange rates several orders of magnitude lower than the experimental ones. This effect is attributed to the overstabilization of coordination number four by these functionals with respect to the five‐coordinated transition states responsible for the associative ( A ) or associative interchange ( Ia ) water exchange mechanisms. However, the M06 and M062X functionals provide results in good agreement with the experimental data: M062X/TZVP calculations yield a concerted Ia mechanism for the water exchange in [Be(H2O)4]2+·8H2O that gives an average residence time of water molecules in the first coordination sphere of 260 μs. For [Li(H2O)4]+·14H2O the water exchange reaction is predicted to follow an A mechanism with a residence time of inner‐sphere water molecules of 25 ps.  相似文献   

16.
The reaction of Be · aq2+ with OH? leeds not only to loss of protons by the metalaquo ion but also to structural changes in the solvation sphere. These can be studied by following the pH variations during the first decisecond after mixing the solutions of metal salt and alkali hydroxide. The equilibrium Be2+ ? BeOH+ is reached within 5 milliseconds if acid free Beryllium solutions are used. If the metal solution is strongly acidic, however, the establishment of the equilibrium needs more time because of the slowness of the process H+ + BeOH+ → Be2+ (k ~ 105 M?1, s?1). The extraction of two protons produces in the first instance an unstable Be(OH) species which transforms into the stable isomer Be(OH)2 (solvatation isomerism) in a first-order reaction of half-life of 7 ms. This isomerisation causes almost complete disappearance of BeOH+ from the equilibrium Be2+ ? BeOH+ ? Be(OH)2. (KAKIHANA & SILLEN state that the relaxed solutions contain only Be2+, Be(OH)2, Be3(OH) and some Be2OH3+.) The formation of the polynuclear species Be3(OH) needs about 30 seconds to go to completion.  相似文献   

17.
Recent high‐resolution spectroscopic studies by Merritt, Bondybey, and Heaven (Science 2009 , 324, 1548) have heightened the anticipation that small beryllium clusters will soon be observed in the laboratory. Beryllium clusters are important discrete models for the theoretical study of metals. The trigonal bipyramidal Be5 molecule is studied using high‐level coupled cluster methods. We obtain the optimized geometry, atomization and dissociation energies, and vibrational frequencies. The c~CCSDT(Q) method is employed to compute the atomization and dissociation energies. In this approach, complete basis set (CBS) extrapolations at the CCSD(T) level of theory are combined with an additive correction for the effect of iterative triple and perturbative quadruple excitations. Harmonic vibrational frequencies are obtained using analytic gradients computed at the CCSD(T) level of theory. We report an atomization energy of 129.6 kcal mol?1 at the trigonal bipyramid global minimum geometry. The Be5→Be4+Be dissociation energy is predicted to be 39.5 kcal mol?1. The analogous dissociation energies for the smaller beryllium clusters are 64.0 kcal mol?1 (Be4→Be3+Be), 24.2 kcal mol?1 (Be3→Be2+Be), and 2.7 kcal mol?1 (Be2→Be+Be). The trigonal bipyramidal Be5 structure has an equatorial–equatorial bond length of 2.000 Å and an axial–equatorial distance of 2.060 Å. Harmonic frequencies of 730, 611, 456, 583, 488, and 338 cm?1 are obtained at the CCSD(T)/cc‐pCVQZ level of theory. Quadruple excitations are found to make noticeable contributions to the energetics of the pentamer, which exhibits a significant level of static correlation.  相似文献   

18.
Adsorption of C2H4 and C3H6 on copper in oxidized samples of CuZSM-5 is found to increase with the copper concentration; simultaneously, olefin adsorption on the Br?nsted acid sites decreases. The Cu2+ cations in the square-planar coordination exhibit higher reactivity in olefin adsorption than copper cations in the square-pyramidal coordination. Thermal treatment of CuZSM-5 with hydrogen results in regeneration of the Br?nsted acid sites for olefin adsorption and the disappearance of Cu2+ cations, the active sites of adsorption, due to the reduction of Cu2+ to Cu+ and Cu0. Desorption peaks appear in the TPD spectra upon the interaction between the adsorbed hydrocarbons and NO2. These peaks are not observed upon separate adsorption of the reactants, and they are likely due to decomposition of NO2-hydrocarbon complexes over both the Br?nsted and copper-containing sites of the zeolite  相似文献   

19.
Water adsorption on Pt(111) surfaces treated with oxygen or hydrogen chloride at 20 K has been studied by Fourier transform infrared spectroscopy and scanning tunneling microscopy. Water molecules chemisorb predominantly on the sites of the electronegative additives (O or Cl-), forming hydrogen bonds of O-HO or O-HCl-. On a Pt(111)-2×2-O surface, water adsorption produces species (O(D2O)), monomeric water (D2O), (O(D2O)2) and ring tetramer-like cluster (O(D2O)3) on a Pt(111) surface. On a Pt(111)-3×3-Cl- (θ=0.44) surface, water adsorption gives rise to a Pt(111)-(4×2)-(H3O++Cl-) co-adsorption structure to form a hydrogen-bonding network between Cl- and H3O+ ions.  相似文献   

20.
The quantum mechanics (QM) method and grand canonical Monte Carlo (GCMC) simulations are used to study the effect of lithium cation doping on the adsorption and separation of CO2, CH4, and H2 on a twofold interwoven metal–organic framework (MOF), Zn2(NDC)2(diPyNI) (NDC=2,6‐naphthalenedicarboxylate; diPyNI=N,N′‐di‐(4‐pyridyl)‐1,4,5,8‐naphthalenetetracarboxydiimide). Second‐order Moller–Plesset (MP2) calculations on the (Li+–diPyNI) cluster model show that the energetically most favorable lithium binding site is above the pyridine ring side at a distance of 1.817 Å from the oxygen atom. The results reveal that the adsorption capacity of Zn2(NDC)2(diPyNI) for carbon dioxide is higher than those of hydrogen and methane at room temperature. Furthermore, GCMC simulations on the structures obtained from QM calculations predict that the Li+‐doped MOF has higher adsorption capacities than the nondoped MOF, especially at low pressures. In addition, the probability density distribution plots reveal that CO2, CH4, and H2 molecules accumulate close to the Li cation site. The selectivity results indicate that CO2/H2 selectivity values in Zn2(NDC)2(diPyNI) are higher than those of CO2/CH4. The selectivity of CO2 over CH4 on Li+‐doped Zn2(NDC)2(diPyNI) is improved relative to the nondoped MOF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号