首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 653 毫秒
1.
We experimentally demonstrate the possibility of retrieving the spatial coherence of an infrared source by using an up-conversion interferometer. Sum-frequency generation in Ti-diffused periodically poled lithium-niobate waveguides in both arms of the interferometer is used to convert the infrared into the visible domain. The fringe contrast of the interference pattern in the visible domain permits us to resolve the spatial separation of two uncorrelated pointlike infrared sources, which simulate a binary star. The validity of these measurements is confirmed through a simultaneous comparison with a reference interferometer working in the infrared domain.  相似文献   

2.
We create mesoscopic point and line defects by scanning probe lithography to control the magnetization reversal process in Pt/Co/Pt ultra thin film devices. The domain wall propagation near the defects is studied by the Kerr microscopy and extraordinary Hall effect measurements. The observed domain wall pinning is used to block and channel the domain expansion and to create artificial domain patterns.  相似文献   

3.
Layered metal-dielectric metamaterials have filtering properties both in the frequency domain and in the spatial frequency domain. Engineering their spatial filtering response is a way of designing structures with specific diffraction properties for such applications as sub-diffraction imaging, supercollimation, or optical signal processing at the nanoscale. In this paper we review the recent progress in this field. We also present a numerical optimization framework for layered metamaterials, based on the use of evolutionary algorithms. A measure of similarity obtained using Hölder’s inequality is adapted to construct the overall criterion function. We analyse the influence of surface roughness on the quality of imaging.  相似文献   

4.
We address the problem of entanglement protection against surrounding noise by a procedure suitably exploiting spatial indistinguishability of identical subsystems. To this purpose, we take two initially separated and entangled identical qubits interacting with two independent noisy environments. Three typical models of environments are considered: amplitude damping channel, phase damping channel and depolarizing channel. After the interaction, we deform the wave functions of the two qubits to make them spatially overlap before performing spatially localized operations and classical communication (sLOCC) and eventually computing the entanglement of the resulting state. This way, we show that spatial indistinguishability of identical qubits can be utilized within the sLOCC operational framework to partially recover the quantum correlations spoiled by the environment. A general behavior emerges: the higher the spatial indistinguishability achieved via deformation, the larger the amount of recovered entanglement.  相似文献   

5.
We report the first experimental violation of Bell's inequality in the spatial domain using the Einstein-Podolsky-Rosen state. Two-photon states generated via optical spontaneous parametric down-conversion are shown to be entangled in the parity of their one-dimensional transverse spatial profile. Superpositions of Bell states are prepared by manipulation of the optical pump's transverse spatial parity-a classical parameter. The Bell-operator measurements are made possible by devising simple optical arrangements that perform rotations in the one-dimensional spatial-parity space of each photon of an entangled pair and projective measurements onto a basis of even-odd functions. A Bell-operator value of 2.389+/-0.016 is recorded, a violation of the inequality by more than 24 standard deviations.  相似文献   

6.
Multidimensional imaging using compressive Fresnel holography   总被引:1,自引:0,他引:1  
Horisaki R  Tanida J  Stern A  Javidi B 《Optics letters》2012,37(11):2013-2015
We propose a generalized framework for single-shot acquisition of multidimensional objects using compressive Fresnel holography. A multidimensional object with spatial, spectral, and polarimetric information is propagated with the Fresnel diffraction, and the propagated signal of each channel is observed by an image sensor with randomly arranged optical elements for filtering. The object data are reconstructed using a compressive sensing algorithm. This scheme is verified with numerical experiments. The proposed framework can be applied to imageries for spectrum, polarization, and so on.  相似文献   

7.
Due to its favorable peak-to-average power ratio (PAPR), a single-carrier frequency-division multiple access (SC-FDMA) scheme has been chosen for the 3GPP Long Term Evolution Advanced (LTE-A) uplink, as opposed to the orthogonal frequency-division multiple access (OFDMA) scheme used in the downlink. SC-FDMA, however, is prone to suffer from the effects of inter-symbol interference. When combined with multiple-input multiple-output (MIMO) transmission, the complexity of optimal detection for SC-FDMA grows exponentially with the product of the number of transmitting antennas and the channel length. A means to reduce the complexity is to equalize the channel in the frequency domain first, similar to OFDMA, followed by detection in the time domain, using well-developed standard receivers for flat fading MIMO channels. Apparently, these reduced-complexity two-stage receivers suffer from a rate loss as a consequence of their simplifying design assumptions. In this paper, we provide an extensive model of SC-FDMA transmission with frequency domain equalization (FDE). Based on this model, we derive the achievable rates of four reduced-complexity two-stage receivers within the mismatched receiver framework in terms of generalized mutual information (GMI). The rate expressions allow us to assess the rate loss as compared to the optimal receiver for varying channel parameters such as channel length and spatial correlation. It is shown, for instance, that a distributed subcarrier mapping which is beneficial from a frequency diversity point of view substantially deteriorates the achievable rates. It is also explained how this loss can be compensated for by combining time-domain detection with frequency-domain interference cancelation.  相似文献   

8.

Abstract  

Three-dimensional (3D) visualization of spatial and non-spatial data is a well-established practice having numerous applications. The cheapest and the most efficient way to 3D visualization is 3D images/Anaglyphs. 3D images contain 3D information of the objects present in the image. These images are easily obtained by superimposing left and right eye images in different color in a single image. In this paper, a novel security framework, viz., watermarking scheme, is presented to ensure their security. The proposed security framework is employed in fractional Fourier transform domain of secret color channel followed by the embedding using singular value decomposition. The secret channels (SEC) are obtained by applying reversible integer transform on the RGB channels. The experimental results prove the robustness and imperceptibility of the proposed watermarking scheme.  相似文献   

9.
We report spatial domain measurements of the damping of surface-plasmon excitations in metal films with periodic nanohole arrays. The measurements reveal a short coherent propagation length of a few microm inside nanohole arrays, consistent with delays of about 10 fs in ultrafast transmission experiments. This implies that the transmission spectra of the entire plasmonic band-gap structure are homogeneously broadened by radiative damping of surface-plasmon excitations. We show that a Rayleigh-like scattering of surface plasmons by the periodic hole array is the microscopic origin of this damping, allowing the reradiation rate to be controlled.  相似文献   

10.
We consider the characteristics of signals in a multipath VHF communication channel which affect the efficiency of spatio-temporal processing of those signals. We present the results of experimental measurements of the efficiency of interference compensation with frequency-shift modulation under controlled conditions. Using the obtained data on various characteristics of the interference propagation channel, we analyze the factors decreasing the degree of compensation for such interference. We show that the multipath nature of the radio channel is the main factor leading to frequency and spatial selective fadings and uncorrelated distortions in the shape of the signal received by separated antennas. Research and Production Enterprise POLYOT, Nizhny Novgorod, Russia. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 43, No. 1, pp. 45–58, September, 2000.  相似文献   

11.
We report measurements of a tunable double quantum dot, operating in the quantum regime, with integrated local charge sensors. The spatial resolution of the sensors allows the charge distribution within the double dot system to be resolved at fixed total charge. We use this readout scheme to investigate charge delocalization as a function of temperature and strength of tunnel coupling, demonstrating that local charge sensing can be used to accurately determine the interdot coupling in the absence of transport.  相似文献   

12.
Oh WY  Vakoc BJ  Yun SH  Tearney GJ  Bouma BE 《Optics letters》2008,33(12):1330-1332
We demonstrate a novel high-speed polarization-sensitive optical frequency domain imaging system employing high-speed polarization modulation. Rapid and continuous polarization modulation of light prior to illumination of the sample is accomplished by shifting the frequency of one polarization eigenstate by an amount equal to one quarter of the digitization sampling frequency. This approach enables polarization-sensitive imaging with a single detection channel and overcomes artifacts that may arise from temporal variations of the birefringence in fiber-optic imaging probes and spatial variation of birefringence in the sample.  相似文献   

13.
In this paper, we propose an optimization framework to determine the distribution of power and bits/channel use to secondary users in a competitive cognitive radio networks. The objectives of the optimization framework are to minimize total transmission power, maximize total bits/channel use and also to maintain quality of service. An upper bound on probability of bit error and lower bound on bits/channel use requirement of secondary users are considered as quality of service. The optimization problem is also constrained by total power budget across channels for a user. Simulating the framework in a centralized manner shows that more transmit power is required to allocate in a channel with higher noise power. However, allocation of bits/channel use is directly proportional to signal to interference plus noise power ratio. The proposed framework is more capable of supporting high bits/channel use requirement than existing resource allocation framework. We also develop the game theoretic user based distributed approach of the proposed framework. We see that user based distributed solution also follows centralized solution.  相似文献   

14.
15.
In this work, we propose a consistent turbulence-modeling framework for hybrid LES/RANS modeling. In this framework, the filtered and Reynolds averaged Navier–Stokes (RANS) equations are solved simultaneously in the whole domain on their respective meshes. Consistency between the two solutions is achieved in terms of velocity, pressure, and turbulent quantities through additional drift terms in the corresponding equations. This approach leads to clean conditions at the LES/RANS interfaces. Note that this general framework does not depend on the specific choice of LES and RANS models. A hybrid LES/RANS solver is developed within this framework and used to simulate the flow in a plane channel and that in a channel with periodic hills. The results demonstrate that the hybrid solver leads to significantly improved results with moderate computational overhead compared to traditional LES, making it a promising candidate for industrial flow simulations.  相似文献   

16.
We present the results of a search for the effects of large extra spatial dimensions in pp collisions at sqrt[s] = 1.96 TeV in events containing a pair of energetic muons. The data correspond to 246 pb(-1) of integrated luminosity collected by the D0 experiment at the Fermilab Tevatron Collider. Good agreement with the expected background was found, yielding no evidence for large extra dimensions. We set 95% C.L. lower limits on the fundamental Planck scale between 0.85 and 1.27 TeV within several formalisms. These are the most stringent limits achieved in the dimuon channel to date.  相似文献   

17.
Circular integrated optical (ring or disk) microresonators are increasingly employed as compact and versatile wavelength filters. In this paper, we investigate a 2-D frequency domain model for these devices, based on spatial coupled mode theory. The microresonators are functionally represented in terms of two couplers with appropriate connections using bent and straight waveguides. The abstract scattering matrices of the couplers and the propagation constants of the cavity bends allow to compute the spectral responses of the resonators. Capitalizing on the availability of rigorous analytical modal solutions for bent waveguides, the constituent bent-straight waveguide couplers are modeled using a spatial coupled mode formalism derived by means of a variational principle. The resulting scattering matrices show reciprocity properties as expected according to the symmetry of the coupler structures. We present results for the spectral response and field examples for microresonators with mono- and multi-modal cavities for TE and TM polarizations. Comparisons with finite difference time domain simulations show very good overall agreement.  相似文献   

18.
We study the multifragmentation phenomenon in heavy-ion collisions by varying the spatial constraint criterion in minimum spanning tree (MST) clusterisation procedure. Within the framework of isospin-dependent quantum molecular dynamics (IQMD) model, the role of isospin-dependent spatial constraint, i.e. iso-MST version, is investigated on different fragment observables in various isobaric pair of reaction systems varying in the entrance channel isospin (N / Z) content. The fragment observables such as persistence, gain, average yield of free nucleons, light and intermediate mass fragments are slightly sensitive to the isospin-dependent spatial constraint criterion particularly in heavier reaction systems. For a given isobaric pair of reaction systems, the fragment production, however, remains indifferent to isospin content of the colliding nuclei.  相似文献   

19.
Using femtosecond laser writing, optical waveguides were monolithically integrated into a commercial microfluidic lab-on-a-chip device, with the waveguides intersecting a microfluidic channel. Continuous-wave laser excitation through these optical waveguides confines the excitation window to a width of 12 microm, enabling high-resolution monitoring of the passage of different types of fluorescent analytes when migrating and being separated in the microfluidic channel by microchip capillary electrophoresis. Furthermore, we demonstrate on-chip-integrated waveguide excitation and detection of a biologically relevant species, fluorescently labeled DNA molecules, during microchip capillary electrophoresis. Well-controlled plug formation as required for on-chip integrated capillary electrophoresis separation of DNA molecules, and the combination of waveguide excitation and a low limit of detection, will enable monitoring of extremely small quantities with high spatial resolution.  相似文献   

20.
Wavelet methods for image regularization offer a data-driven alternative to Gaussian smoothing in functional magnetic resonance (fMRI) analysis. Their impact has been limited by the difficulties in integrating regularization in the wavelet domain and inference in the image domain, precluding the probabilistic decision on which areas are activated by a task. Here we present an integrated framework for Bayesian estimation and regularization in wavelet space that allows the usual voxelwise hypothesis testing. This framework is flexible, being an adaptation to fMRI time series of a more general wavelet-based functional mixed-effect model. Through testing on a combination of simulated and real fMRI data, we show evidence of improved signal recovery, without compromising test accuracy in image space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号