首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
The foundations of the two-component quantum theory of atoms in molecules (TC-QTAIM) are addressed in this contribution. In this regard, the theory is presented in an axiomatic manner and the main theorems describing regional properties of atoms in molecules are considered in detail. This is an extension of the orthodox quantum theory of atoms in molecules (QTAIM) for dealing with non-adiabatic wavefunctions of usual molecules as well as extracting the regional quantum structure of exotic species from the corresponding wavefunctions. The best examples of the latter are positronic and muonic species. The computational study of a model system consisting of a clamped lithium nucleus, four electrons, and a positively charged quantum particle carrying a unit of positive charge with a variable mass, m = 200–1013 m e, supplements the theoretical argument demonstrating unambiguously that the TC-QTAIM analysis yields reasonable results. It reveals that the contribution of the positively charged particle in the topological analysis and basin properties is non-negligible. Most importantly, it is demonstrated that by increasing the mass of the positive particle, the TC-QTAIM analysis tends toward the QTAIM analysis of the lithium hydride system considered within the clamped nucleus paradigm. This result seems to indicate that the orthodox QTAIM is just the asymptote of the TC-QTAIM, the latter encompasses the former. Thus, one may claim that the TC-QTAIM is a unified framework for the AIM analysis of vast variety of quantum systems.  相似文献   

3.
Calculations within the framework of the interacting quantum atoms (IQA) approach have shown that the interactions of the helium atom with both tertiary, tC, and secondary, sC, carbon atoms in the metastable He@adamantane (He@adam) endohedral complex are bonding in nature, whereas the earlier study performed within the framework of Bader’s quantum theory of atoms in molecules (QTAIM) revealed that only He???tC interactions are bonding. The He???tC and He???sC bonding interactions are shown to be forced by the high pressure that the helium and carbon atoms exert upon each other in He@adam. The occurrence of a bonding interaction between the helium and sC atoms, which are not linked by a bond path, clearly shows that the lack of a bond path between two atoms does not necessarily indicate the lack of a bonding interaction, as is asserted by QTAIM. IQA calculations showed that not only the destabilization of the adamantane cage, but also a huge internal destabilization of the helium atom, contribute to the metastability of He@adam, these contributions being roughly equal. This result disproves previous opinions based on QTAIM analysis that only the destabilization of the adamantane cage accounts for the endothermicity of He@adam. Also, it was found that there is no homeomorphism of the ρ( r ) and ‐v( r ) fields of He@adam. Comparison of the IQA and QTAIM results on the interactions in He@adam exposes other deficiencies of the QTAIM approach. The reasons for the deficiencies in the QTAIM approach are analyzed.  相似文献   

4.
Professor Lou Massa’s contributions since the late 1960s to the founding of the field now known as “Quantum Crystallography” (QCr) are briefly described. The term itself has been coined in 1995 by L. Huang, L. Massa, and J. Karle (1985 Nobel Laureate in Chemistry). Originally, QCr referred to the Clinton-Massa’s iterative approach that, for the first time, delivered N-representable electron densities that are consistent with the observed structure factors. These densities satisfy, at once, experimental observation and the necessarily underlying quantum mechanical requirement of being derived from an antisymmetric wavefunction. The single-determinantal quantum mechanical structure Huang, Massa, and Karle (HMK) imposed in their original work can be extended to any method that uses MOs including CI or DFT, as they demonstrate in their papers. HMK use the Clinton-Massa method to reconstruct approximations to the first order reduced density matrix of large molecules in a piecemeal manner from computationally-tractable fragments. The idea was also adapted by J. Hernández Trujillo and R. F. W. Bader in the context of the Quantum Theory of Atoms in Molecules (QTAIM). Massa et al. simplified and generalized this fragmentation method into what came to be known as the “Kernel Energy Method” (KEM) which delivers the properties of large molecules accurately, at a fraction of the computational time, and within any model chemistry as applications to DNA, tRNA, the proto-ribosome, insulin, and graphene, amply demonstrate. Lou Massa has also pushed the envelope in other directions as well. In 1992, he and W. Lipscomb (1976 Nobel Laureate in Chemistry) published several papers predicting the structure and stability of Boron nanotubes and boron fullurene 12 years before they were eventually synthesized in laboratories at Yale and at Brookhaven. More recently, in 2006 L. Massa, J. Karle, and A. Yonath (2009 Nobel Laureate in Chemistry) (MKY) proposed a startling alternative to the then widely-accepted mechanism of the peptide bond formation in the active site of the ribosome. In sharp contrast with the accepted “shuttle mechanism”, MKY’s “direct” mechanism is simpler and, importantly, reproduces the measured thermodynamic and kinetic parameters. Massa has also contributed to other domains, for example interstellar chemistry, and to the policy, history, and philosophy of science. His TV program and Oxford University Press book (both titled “Science and the Written Word”) represent an invaluable and candid documentation of some of the key discoveries in the words of a dozen Nobel Laureates and a constellation of scholars representing the Who’s Who of current science. It is with both admiration and affection that this paper (and this issue) is dedicated to Lou Massa, the person and the scientist.  相似文献   

5.
An explicit classification of consistent variational constraints within the context of the “quantum theory of proper open subsystems” as well as the “quantum theory of atoms in molecules” (QTAIM) it presented. It is demonstrated that the general variational procedure is not sensitive enough to discriminate between different mathematically consistent variational conditions. The uniqueness of the regional kinetic energy is employed to derive the net zero‐flux condition and the regions satisfying this condition are named as quantum divided basins. A modified form of the local zero‐flux is proposed in order to define topological atoms within the context of the orthodox QTAIM. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

6.
This contribution deals with the subsystem variational procedure within the context of the quantum theory of atoms in positronic molecules (QTAIPM). Before introducing the subsystem energy functional termed as joint subsystem energy functional, a novel notation and the combination strategy are disclosed in detail by restating the positronic subsystem hypervirial theorem. They are employed in proposing the proper subsystem energy functional, the validity of which is checked by various criteria. The zero flux surfaces of the joint density distribution are used to define the topological atoms in the positronic molecules, and they are incorporated into the subsystem variational procedure as proper real space boundary conditions. The variational procedure finally yields the flux of the joint current property density that also appears in the positronic subsystem hypervirial theorem. At every stage, the corresponding equations for the purely electronic systems within the context of the quantum theory of atoms in molecules (QTAIM) are presented to clearly reveal the analogy between these two formalisms and to emphasize the importance of combining the property density distributions in the QTAIPM. The presented material demonstrates the internal consistency of the whole framework and discloses the fact that the QTAIM must be regarded as a variant of the QTAIPM. Furthermore, this formalism promises an extended QTAIM, which is hoped to resolve the issue of molecular structure beyond the clamp nuclei approximation. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

7.
The general formalism of an extended quantum theory of atoms in molecules (QTAIM) dealing with the multi-component quantum systems, composed of various types of quantum particles, is disclosed in this contribution. This novel methodology, termed as the multi-component QTAIM (MC-QTAIM), is able to deal with non-adiabatic ab initio wavefunctions extracting atoms in molecules quantifying their properties. It can also be applied to elucidate the AIM structure of exotic species and bound quantum systems consisting of fundamental elementary particles like positrons and muons. The formalism is based on the previously disclosed density combination idea that is extended to derive the multi-component subsystem hypervirial theorem as well as the extended subsystem energy functional. Through the extended subsystem variational procedure, inspired from Schrödinger’s original variational principle, the surface terms containing the flux of the current property densities are derived. Accordingly, the extended Gamma field is introduced during this variational procedure that is used as the basic scalar field in the topological analysis yielding atoms in molecules and their real space boundaries. The Gamma field is central to the MC-QTAIM, replacing the usual one-electron density employed in the orthodox QTAIM and corresponding topological analysis. Through the multi-component hypervirial theorem, various regional theorems are derived which are then used to quantify the mechanical properties of atoms in molecules; these include the force, virial, torque, power, continuity and current theorems. In order to demonstrate the capability of the formalism, isotopically asymmetric hydrogen molecules, HD, HT and DT as well as YX systems (Y = 6Li, 7Li; X = H, D, T) composed of electrons and two different nuclei, all treated equally as quantum waves instead of clamped particles, are analyzed within context of the MC-QTAIM. The resulting computational analysis demonstrates that the MC-QTAIM is able to yield reasonable topological structures similar to those observed previously for diatomic species within context of the orthodox QTAIM. The asymmetrical nature of these species, inherent in their non-Born–Oppenhiemer wavefunctions, manifests itself clearly in the MC-QTAIM analysis yielding two distinguishable atomic basins with different properties. These differences are rationalized generally by the observed electron transfer from one basin to the other. Finally, some possible future theoretical extensions are considered briefly.  相似文献   

8.
Atom Volumina and Charge Distributions in Nitridometalates The linear relation between the nitride volumina calculated by use of the QTAIM‐method developed by Bader and those derived from the tables of volume increments reported by Biltz does not hold for nitridometalates Aa[MmNn] (A = alkali or alkaline earth metal, M = transition metal). The clear deviation from linearity is caused by the different kinds of chemical bonds being present within the complex [MmNn] anions on the one hand and between the complex anions and the cations on the other hand. The significant covalency of the chemical bonds within the complex [MmNn] anions is reflected by the calculated volumina and the charge distributions between the M and N atoms using the Bader method. By comparing the oxidation numbers of the atoms forming the complex anions with their calculated charge assignments (QTAIM method) a significant charge reduction becomes evident.  相似文献   

9.
10.
Atomic partial charges are among the most commonly used interpretive tools in quantum chemistry. Dozens of different ‘population analyses’ are in use, which are best seen as proxies (indirect gauges) rather than measurements of a ‘general ionicity’. For the GMTKN55 benchmark of nearly 2,500 main-group molecules, which span a broad swathe of chemical space, some two dozen different charge distributions were evaluated at the PBE0 level near the 1-particle basis set limit. The correlation matrix between the different charge distributions exhibits a block structure; blocking is, broadly speaking, by charge distribution class. A principal component analysis on the entire dataset suggests that nearly all variation can be accounted for by just two ‘principal components of ionicity’: one has all the distributions going in sync, while the second corresponds mainly to Bader QTAIM vs. all others. A weaker third component corresponds to electrostatic charge models in opposition to the orbital-based ones. The single charge distributions that have the greatest statistical similarity to the first principal component are iterated Hirshfeld (Hirshfeld-I) and a minimal-basis projected modification of Bickelhaupt charges. If three individual variables, rather than three principal components, are to be identified that contain most of the information in the whole dataset, one representative for each of the three classes of Corminboeuf et al. is needed: one based on partitioning of the density (such as QTAIM), a second based on orbital partitioning (such as NPA), and a third based on the molecular electrostatic potential (such as HLY or CHELPG).  相似文献   

11.
Charges on carbon atoms in the molecules of 4-aryl-substituted [2.2]paracyclophanes were estimated and the role of charge control as a kinetic factor in regioselectivity of their complexation with (NH3)3Cr(CO)3 was investigated using electron density distribution analysis by the Bader, Weinhold-Reed (NPA), and Mulliken methods. The most plausible picture of the electron density distribution in substituted [2.2]paracyclophanes was obtained by the Bader method and compared with experimental data on the yields of reaction products. Topological analysis of the electron density distribution in the [2.2]paracyclophane molecule by the Bader method confirmed the existence of a weak antibonding interaction between the stacked benzene rings. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 441–444, March, 1999.  相似文献   

12.
We use quantum theory of atoms in molecules (QTAIM) and the stress tensor topological approaches to explain the effects of the torsion φ of the C‐C bond linking the two phenyl rings of the biphenyl molecule on a bond‐by‐bond basis using both a scalar and vector‐based analysis. Using the total local energy density H( r b), we show the favorable conditions for the formation of the controversial H–H bonding interactions for a planar biphenyl geometry. This bond‐by‐bond QTAIM analysis is found to be agreement with an earlier alternative QTAIM atom‐by‐atom approach that indicated that the H–H bonding interaction provided a locally stabilizing effect that is overwhelmed by the destabilizing role of the C‐C bond. This leads to a global destabilization of the planar biphenyl conformation compared with the twisted global minimum. In addition, the H( r b) analysis showed that only the central torsional C‐C bond indicated a minimum for a torsion φ value coinciding with that of the conventional global energy minimum. The H–H bonding interactions are found to be topologically unstable for any torsion of the central C‐C bond away from the planar biphenyl geometry. Conversely, we demonstrate that for 0.0° < φ < 39.95° there is a resultant increase in the topological stability of the C nuclei comprising the central torsional C‐C bond. Evidence is found of the effect of the H–H bonding interactions on the torsion φ of the central C‐C bond of the biphenyl molecule in the form of the QTAIM response β of the total electronic charge density ρ( r b). Using a vector‐based treatment of QTAIM we confirm the presence of the sharing of chemical character between adjacent bonds. In addition, we present a QTAIM interpretation of hyperconjugation and conjugation effects, the former was quantified as larger in agreement with molecular orbital (MO) theory. The stress tensor and the QTAIM H atomic basin path set areas are independently found to be new tools relevant for the incommensurate gas to solid phase transition occurring in biphenyl for a value of the torsion reaction coordinate φ ≈ 5°. © 2015 Wiley Periodicals, Inc.  相似文献   

13.
The generalization to arbitrary molecular geometries of the energetic partitioning provided by the atomic virial theorem of the quantum theory of atoms in molecules (QTAIM) leads to an exact and chemically intuitive energy partitioning scheme, the interacting quantum atoms (IQA) approach, that depends on the availability of second-order reduced density matrices (2-RDMs). This work explores the performance of this approach in particular and of the QTAIM in general with approximate 2-RDMs obtained from the density matrix functional theory (DMFT), which rests on the natural expansion (natural orbitals and their corresponding occupation numbers) of the first-order reduced density matrix (1-RDM). A number of these functionals have been implemented in the promolden code and used to perform QTAIM and IQA analyses on several representative molecules and model chemical reactions. Total energies, covalent intra- and interbasin exchange-correlation interactions, as well as localization and delocalization indices have been determined with these functionals from 1-RDMs obtained at different levels of theory. Results are compared to the values computed from the exact 2-RDMs, whenever possible.  相似文献   

14.
Based on the density functional theory and partitioning the molecular electron density ρ (r) into atomic electronic densities and bond electronic densities, the expressions of the total molecular energy and the “effective electronegativity” of an atom or a bond in a molecule are obtained. The atom-bond electronegativity equalization model is then proposed for the direct calculation of the total molecular energy and the charge distribution of large molecules. Practical calculations show that the atom-bond electronegativity equalization model can reproduce the correspondingab initio values of the total molecular energies and charge distributions for a series of large molecules with a very satisfactory accuracy.  相似文献   

15.
The topological analysis, based on the quantum theory of atoms in molecules (QTAIM) of Bader and the ETS-NOCV charge and energy decomposition method have been used to characterize coordination bonds, chelating rings, and additional intramolecular interactions in the ZnNTA and ZnNTPA complexes in solvent. The QTAIM and ETS-NOCV studies have conclusively demonstrated that the H-clashes (they are observed only in the ZnNTPA complex and classically are interpreted as steric hindrance destabilizing a complex) are characterized by (i) the electron flow channel between the H-atoms involved, as discovered by the ETS-NOCV analysis (on average, ΔE(orb) = -1.35 kcal mol(-1)) and (ii) QTAIM-defined a bond path that indicates the presence of a preferred quantum-mechanical exchange channel, hence, they should be seen as H-H intramolecular bonding interactions. The main reason for the formation of a weaker ZnNTPA complex was attributed to the strain energy (from both QTAIM and ETS-NOCV techniques) and the larger Pauli repulsion contribution found from the ETS-NOCV analysis. An excellent agreement between physical properties controlling the stability of the two complexes was found from the two techniques, QTAIM and ETS-NOCV.  相似文献   

16.
In the current study, the coordination chemistry of nine-coordinate Ac(III) complexes with 35 monodentate and bidentate ligands was investigated using density functional theory (DFT) in terms of their geometries, charges, reaction energies, and bonding interactions. The energy decomposition analysis with naturals orbitals for chemical valence (EDA-NOCV) and the quantum theory of atoms in molecules (QTAIM) were employed as analysis methods. Trivalent Ac exhibits the highest affinities toward hard acids (such as charged oxophilic donors, fluoride), so its classification as a hard acid is justified. Natural population analysis quantified the involvement of 5f orbitals on Ac to be about 30% of total valence electron natural configuration indicating that Ac is a member of the actinide series. Pearson correlation coefficients were used to study the pairwise correlations among the bond lengths, ΔG reaction energies, charges on Ac and donor atoms, and data from EDA-NOCV and QTAIM. Strong correlations and anticorrelations were found between Voronoi charges on donor atoms with ΔG, EDA-NOCV interaction energies and QTAIM bond critical point densities.  相似文献   

17.
The Quantum Theory of Atoms in Molecules (QTAIM) is used to elucidate the effects of relativity on chemical systems. To do this, molecules are studied using density‐functional theory at both the nonrelativistic level and using the scalar relativistic zeroth‐order regular approximation. Relativistic effects on the QTAIM properties and topology of the electron density can be significant for chemical systems with heavy atoms. It is important, therefore, to use the appropriate relativistic treatment of QTAIM (Anderson and Ayers, J. Phys. Chem. 2009, 115, 13001) when treating systems with heavy atoms. © 2016 Wiley Periodicals, Inc.  相似文献   

18.
19.
The molecular dipole moments, their derivatives, and the fundamental IR intensities of the X2CY (X = H, F, Cl; Y = O, S) molecules are determined from QTAIM atomic charges and dipoles and their fluxes at the MP2/6-311++G(3d,3p) level. Root-mean-square errors of +/-0.03 D and +/-1.4 km mol(-1) are found for the molecular dipole moments and fundamental IR intensities calculated using quantum theory of atoms in molecules (QTAIM) parameters when compared with those obtained directly from the MP2/6-311++G(3d,3p) calculations and +/-0.05 D and 51.2 km mol(-1) when compared with the experimental values. Charge (C), charge flux (CF), and dipole flux (DF) contributions are reported for all the normal vibrations of these molecules. A large negative correlation coefficient of -0.83 is calculated between the charge flux and dipole flux contributions and indicates that electronic charge transfer from one side of the molecule to the other during vibrations is accompanied by a relaxation effect with electron density polarization in the opposite direction. The characteristic substituent effect that has been observed for experimental infrared intensity parameters and core electron ionization energies has been applied to the CCFDF/QTAIM parameters of F2CO, Cl2CO, F2CS, and Cl2CS. The individual atomic charge, atomic charge flux, and atomic dipole flux contributions are seen to obey the characteristic substituent effect equation just as accurately as the total dipole moment derivative. The CH, CF, and CCl stretching normal modes of these molecules are shown to have characteristic sets of charge, charge flux, and dipole flux contributions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号