首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Condensed CO and CO2 are bombarded by approximately 65 MeV 252Cf fission fragments and the desorbed ions are analyzed by time-of-flight mass spectrometry as a function of target temperature, in the ranges 25-33 K and 75-91 K, respectively. Absolute desorption yields are measured up to complete ice sublimation. The mass spectra of both ice targets reveal the emission of: (1) low mass ions, produced by direct Coulomb interaction of the highly charged projectiles and delta-electrons with CO and CO2, and (2) pronounced series of cluster ions. The basic ice cluster structures (CO)n and (CO2)n are present in the emitted cluster series such as (CO)nCO+, (CO2)nCO2+, or (CO2)nCO3-. In the case of CO ice, however, the intense production of the series Cn+, Cn-, and (CO)mCn+ shows that Cn is the main cluster structure, consequence of a higher concentration of free carbon atoms in the nuclear track plasma of CO ice than in that of CO2 ice. Ion cluster abundance is observed to decrease exponentially with cluster mass. The decay constant is k(n) congruent with 0.13, about the same for series based on (CO)n and (CO2)n, but a factor 3.3 higher for the Cn series. The Cn clusters are formed by gas-phase condensation, but the (CO)n and (CO2)n clusters are produced by fracturing of the highly excited solid around the nuclear track. A dramatic reduction of the ion desorption yield is observed near T = 29 K for CO and near T = 85 K for CO2, when fast sublimation occurs and ice thickness vanishes. Close to sublimation temperature, the decay constant of the (CO)2Cn+ series increases due to a decreasing formation probability of large Cn clusters.  相似文献   

2.
Kinetic, isotopic, and infrared studies on well-defined dispersed Pt clusters are combined here with first-principle theoretical methods on model cluster surfaces to probe the mechanism and structural requirements for CO oxidation catalysis at conditions typical of its industrial practice. CO oxidation turnover rates and the dynamics and thermodynamics of adsorption-desorption processes on cluster surfaces saturated with chemisorbed CO were measured on 1-20 nm Pt clusters under conditions of strict kinetic control. Turnover rates are proportional to O(2) pressure and inversely proportional to CO pressure, consistent with kinetically relevant irreversible O(2) activation steps on vacant sites present within saturated CO monolayers. These conclusions are consistent with the lack of isotopic scrambling in C(16)O-(18)O(2)-(16)O(2) reactions, and with infrared bands for chemisorbed CO that did not change within a CO pressure range that strongly influenced CO oxidation turnover rates. Density functional theory estimates of rate and equilibrium constants show that the kinetically relevant O(2) activation steps involve direct O(2)* (or O(2)) reactions with CO* to form reactive O*-O-C*=O intermediates that decompose to form CO(2) and chemisorbed O*, instead of unassisted activation steps involving molecular adsorption and subsequent dissociation of O(2). These CO-assisted O(2) dissociation pathways avoid the higher barriers imposed by the spin-forbidden transitions required for unassisted O(2) dissociation on surfaces saturated with chemisorbed CO. Measured rate parameters for CO oxidation were independent of Pt cluster size; these parameters depend on the ratio of rate constants for O(2) reactions with CO* and CO adsorption equilibrium constants, which reflect the respective activation barriers and reaction enthalpies for these two steps. Infrared spectra during isotopic displacement and thermal desorption with (12)CO-(13)CO mixtures showed that the binding, dynamics, and thermodynamics of CO chemisorbed at saturation coverages do not depend on Pt cluster size in a range that strongly affects the coordination of Pt atoms exposed at cluster surfaces. These data and their theoretical and mechanistic interpretations indicate that the remarkable structure insensitivity observed for CO oxidation reactions reflects average CO binding properties that are essentially independent of cluster size. Theoretical estimates of rate and equilibrium constants for surface reactions and CO adsorption show that both parameters increase as the coordination of exposed Pt atoms decreases in Pt(201) cluster surfaces; such compensation dampens but does not eliminate coordination and cluster size effects on measured rate constants. The structural features and intrinsic non-uniformity of cluster surfaces weaken when CO forms saturated monolayers on such surfaces, apparently because surfaces and adsorbates restructure to balance CO surface binding and CO-CO interaction energies.  相似文献   

3.
《Chemical physics letters》1985,115(6):535-539
Tilting of CO at coverages greater than half a monolayer is considered as a mechanism for reducing the CO-CO repulsion. We find qualitative agreement with the experiment for CO/Pt(110), and predict a slightly smaller tilt for CO/Ni(110). For CO/Cu(100), we find that a bend of about 10° greatly reduces the repulsion.  相似文献   

4.
While various reactions in the inorganic subset of the oscillatory Briggs-Rauscher (BR) reaction were clarified in the recent years, the organic subset of the present mechanisms contains only one process: the iodination of malonic acid. Further organic reactions can play a role, however, if malonic (MA) and iodomalonic (IMA) acids can be oxidized in the BR reaction. As CO2 and CO should be products if such oxidations can take place, the main aim of this work was to learn whether these gases are produced in a significant amount in a BR system. In our BR experiments, a rather intense evolution of both gases was observed with an oscillatory and a nonoscillatory component. With the initial conditions applied here, one from every 6 carbon atoms was oxidized either to CO2 or to CO in the course of the BR reaction. The amount of CO2 was about 4 times higher than that of CO. Experiments are in progress to disclose the reactions which generate the measured gases and their role in the mechanism of the BR reaction.  相似文献   

5.
Methanation of CO over nickel: Mechanism and kinetics at high H2/CO ratios   总被引:3,自引:0,他引:3  
The CO methanation reaction over nickel was studied at low CO concentrations and at hydrogen pressures slightly above ambient pressure. The kinetics of this reaction is well described by a first-order expression with CO dissociation at the nickel surface as the rate-determining step. At very low CO concentrations, adsorption of CO molecules and H atoms compete for the sites at the surface, whereas the coverage of CO is close to unity at higher CO pressures. The ratio of the equilibrium constants for CO and H atom adsorption, K(CO)/K(H), was obtained from the rate of CO methanation at various CO concentrations. K(H) was determined independently from temperature programmed adsorption/desorption of hydrogen to be K(H) = 7.7 x 10(-4) (bar(-0.5)) exp[43 (kJ/mol)/RT] and hence the equilibrium constants for adsorption of CO molecules may be calculated to be K(CO) = 3 x 10(-7) (bar(-1)) exp[122 (kJ/mol)/RT]. Furthermore, the rate of dissociation of CO at the catalyst surface was determined to be 5 x 10(9) (s(-1)) exp[-96.7 (kJ/mol)/RT] assuming that 5% of the surface nickel atoms are active for CO dissociation. The results are compared to equilibrium and rate constants reported in the literature.  相似文献   

6.
采用密度泛函方法研究了Fe(100)表面Cu单层膜上CO的吸附,直接解离,氢助解离以及C-C偶合反应.相比洁净的Fe(100)表面,在Fe(100)的单层Cu膜上,CO的吸附和活化都减弱了.特别是,相比Fe(100)上CO的解离能垒1.08 eV,铜单层膜上CO解离能垒高达2.4 eV.在H原子共吸附的情况下,Fe(1...  相似文献   

7.
在常温、常压下,较系统地研究了CO2在脉冲电晕等离子体条件下的活化与转化,考察了反应器参数、脉冲成形电容、应用电压、气体流量、电晕极性对二氧化碳转化的影响。在本实验条件下,最佳反应器的有效长度为125mm,内径为22mm。二氧化碳转化率和一氧化碳产率随应用电压的增加而增加。另外,随着应用电压的增加,脉冲反应器的能量利用效率反而降低。随着气体流量的增大,二氧化碳的转化率及一氧化碳的产率下降。γ-Al2O3的存在大大促进了二氧化碳的转化,CO2的最高转化率达23%。由于γ-Al2O3在物化性质方面的特性,γ-Al2O3的存在对二氧化碳的转化有重要的作用。研究表明:脉冲电晕放电-催化转化CO2为CO是可行的。  相似文献   

8.
等离子法转化CO2为CO研究进展   总被引:3,自引:0,他引:3  
评述了国内外等离子法转化CO2 为CO的发展状态与趋势 ,重点介绍了非平衡等离子体技术转化CO2 为CO的发展 ,探讨了它的基本反应机理 ,并提出了提高二氧化碳转化率的有效途径是负载型催化剂的研制及研究二氧化碳与有机物的氧化偶联反应 (如CO2 +2CH3 OH·(CH3 O) 2 CO +H2 O)具有重要意义。这为CO2 的化工利用开辟了一条广阔而有效的途径 ,也是控制温室效应 ,促进可持续发展的有效手段  相似文献   

9.
CO adsorption and oxidation over supported Pt14 with different CO coverage on TiO2(110) surface were investigated using density functional theory (DFT) calculations and thermodynamic analysis. According to the phase diagram, Pt14/TiO2(110) and 11CO@Pt14/TiO2(110) were chosen to represent the low and high CO coverage of Pt clusters, respectively. Our study shows that the high coverage of CO can induce the structural change of supported Pt clusters and weaken the interaction between Pt clusters and TiO2 support. The CO adsorption and oxidation mechanism depends on the CO coverage, which is determined by the experimental reactant composition, pressure, and temperature. At low CO coverage, the dissociated oxygen is active specie to form CO2 by reacting with CO. At high coverage, the molecular oxygen can directly react with CO via the formation of OOCO intermediate. Our proposed mechanisms provide useful information for understanding the CO oxidation over Pt clusters with different CO coverage. © 2016 Wiley Periodicals, Inc.  相似文献   

10.
We calculate, using simulated amorphisation and recrystallisation (A&R), that ceria (CeO2) nanoparticles, about 8 nm in diameter, comprise a high concentration of labile surface oxygen species, which we suggest will help promote the oxidation of CO to CO2. In particular, the ceria nanoparticle contains a high proportion of reactive {100} surfaces, surface steps and corner sites. When reduced to CeO1.95, the associated Ce3+ species and oxygen vacancies decorate step, corner and {100} sites in addition to plateau positions on {111}. The energetics of CO oxidation to CO2, catalysed by a ceria nanoparticle, is calculated to be lower compared with CO oxidation associated with the lowest energy surface (i.e. CeO2(111)) of the corresponding 'bulk' material. Our calculated morphologies for the ceria nanoparticles are in accord with experiment.  相似文献   

11.
The occurrence, role and consequences of CO and NO in biological systems are reviewed. This includes their syntheses by heme oxygenases and NO synthases, their biological targets and the physiological effects of their signals. The use of CO and NO gases in medicine are discussed and methods of delivery are illustrated with particular emphasis on the therapeutic properties of compounds that generate controlled amounts of NO and CO in vivo.  相似文献   

12.
The adsorption and reaction of CO and CO(2) on oxidized and reduced SrTiO(3)(100) surfaces have been studied with temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS). XPS results indicate that the oxidized SrTiO(3)(100) surfaces are nearly defect-free with predominantly Ti(4+) ions whereas the sputter-reduced surfaces contain substantial amounts of defects. Both CO and CO(2) are found to adsorb weakly on the oxidized SrTiO(3)(100) surfaces. On sputter-reduced surfaces, enhanced reactivity of CO and CO(2) is observed due to the presence of oxygen vacancy sites, which are responsible for dissociative adsorption of these molecules. Our studies indicate that the CO and CO(2) molecules exhibit relatively weaker interactions with SrTiO(3)(100) compared to those with TiO(2)(110) and TiO(2)(100) surfaces. This is most likely an influence of the Sr cations on the electronic structure of the Ti cations in the mixed oxide of SrTiO(3).  相似文献   

13.
Reactions of gadolinium atoms and dimers with carbon monoxide molecules in solid argon have been studied using matrix isolation infrared absorption spectroscopy. Mononuclear Gd(CO)x (x = 1-3) and dinuclear Gd2(CO)x (x = 1, 2) gadolinium carbonyls formed spontaneously on annealing. The Gd(CO)x complexes are CO terminal-bonded carbonyls, whereas the Gd2CO and Gd2(CO)2 carbonyl complexes were characterized to have asymmetrically bridging and side-on-bonded CO, which are drastically activated with remarkably low C-O stretching frequencies. The cyclic Gd2(mu-C)(mu-O) and Gd3(mu-C)(mu-O) molecules in which the C-O triple bond is completely cleaved were also formed on annealing. The Gd2(CO)2 complex rearranged to the more stable c-Gd2(mu-O)(mu-CCO) isomer, which also has a four-membered ring structure with one CO being completely activated.  相似文献   

14.
Globally reliable dipole oscillator strength distributions (DOSDs) have been constructed for ground state CO and CO2 molecules; the DOSD for CO corresponds to photon energies greater than the electronic absorption threshold while that for CO2 includes the infrared part of the spectra as well. The recommended DOSDs are used to evaluate the isotropic dipole—dipole dispersion energies for the COCO, COCO2 and CO2CO2 interactions as well as the molar refractivities, as a function of wavelength, and the dipole sums, Sk, k = 2(?1) -4, -6, -8, -10, for the two molecules. Pseudo-DOSD representations of the recommended DOSDs are provided which allow the efficient accurate evaluation of the dispersion energy coefficients C6 for the interaction of CO or CO2 with a variety of other atoms and molecules. Previous results for C6 are found to be in disagreement with our recommended results for interactions involving CO2. The results of this paper are used to give a reasonably general discussion of the difficulties associated with obtaining reliable results for C6 by using Padé approximant bounding methods.  相似文献   

15.
An experiment is discussed in which CO can be excited up to energies of several electronvolts by the absorption of infrared radiation from a relatively low-power CO laser. Furthermore, experimental results are examined through kinetic modelling. In the experiment, the beam of an intracavity-chopped CO laser operating on all lines at 500 mW and containing a few milliwatts of the fundamental ν= 1→0 band component, is focused into an absorption cell containing a mixture of CO and Ar. The absorption of this infrared radiation is monitored by the optoacoustic effect. A second CO laser operating cw and capable of providing 8 W on all lines but not lasing on the ν= 1→0 band component, is then focused into the same volume in the absorption cell. With both lasers simultaneously focused into the absorption cell, strong fluorescence from the irradiated region is detected by a photomultiplier tube. Modulation of the signal intensity with time is observed, and indicates chemical destruction of the CO in the cell. An analysis and kinetic modelling calculation of this experiment shows that it is possible to excite CO up to high vibrational quantum numbers (ν40) at gas temperatures up to 800 K. by means of CO laser irradiation at the fundamental ν= 1→0 band component. One source responsible for the fluorescence signal observed in the experiment is identified as the 4th positive A 1Π→X 1Σ+ spontaneous emission. Although the present kinetic model does not incorporate the chemical processes that may lead to the production of additional fluorescing species such as C2, good agreement is obtained with the observed fluorescence signal characteristics.  相似文献   

16.
The CO and CO(2) carbon and oxygen Auger spectra have been measured by electron impact and compared with accurate theoretical calculations accounting for the effects of the dynamics of the nuclei on the energy and linewidth of the Auger bands. The calculations for CO were previously published [L. S. Cederbaum et al., J. Chem. Phys. 95, 6634 (1991)], while for CO(2) they are new and presented here for the first time. For both molecules, particular attention has been paid to the low-kinetic-energy region of the spectra, which corresponds to doubly charged ion states with the two holes mainly localized in the inner valence region. New bands have been observed. It is shown that a proper consideration of the vibrational broadening and shift of the bands due to the dynamics of the nuclei is needed to assign these features. For CO, very large energy shifts between corresponding features in the C 1s and O 1s spectra have been observed, confirming the theoretical predictions of 1991. The new computed spectra of CO(2) allow a very accurate analysis of the experiments over the whole energy range.  相似文献   

17.
We have investigated the reaction of Re(dmb)(CO)(3)COOH with CO(2) using density functional theory, and propose a mechanism for the production of CO. This mechanism supports the role of Re(dmb)(CO)(3)COOH as a key intermediate in the formation of CO. Our new experimental work supports the proposed scheme.  相似文献   

18.
The awareness of symptoms of global warming and its seriousness urges the development of technologies to reduce greenhouse gas emissions. Carbon dioxide (CO(2)) is a representative greenhouse gas, and numerous methods to capture and storage CO(2) have been considered. Recently, the technology to remove high-temperature CO(2) by sorption has received lots of attention. In this study, hydrotalcite, which has been known to have CO(2) sorption capability at high temperature, was impregnated with K(2)CO(3) to enhance CO(2) sorption uptake, and the mechanism of CO(2) sorption enhancement on K(2)CO(3)-promoted hydrotalcite was investigated. Thermogravimetric analysis was used to measure equilibrium CO(2) sorption uptake and to estimate CO(2) sorption kinetics. The analyses based on N(2) gas physisorption, X-ray diffractometry, Fourier transform infrared spectrometry, Raman spectrometry, transmission electron microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy were carried out to elucidate the characteristics of sorbents and the mechanism of enhanced CO(2) sorption. The equilibrium CO(2) sorption uptake on hydrotalcite could be increased up to 10 times by impregnation with K(2)CO(3), and there was an optimal amount of K(2)CO(3) for a maximum equilibrium CO(2) sorption uptake. In the K(2)CO(3)-promoted hydrotalcite, K(2)CO(3) was incorporated without changing the structure of hydrotalcite and it was thermally stabilized, resulting in the enhanced equilibrium CO(2) sorption uptake and fast CO(2) sorption kinetics.  相似文献   

19.
A new technique for the ex situ generation of carbon monoxide (CO) and its efficient incorporation in palladium catalyzed carbonylation reactions was achieved using a simple sealed two-chamber system. The ex situ generation of CO was derived by a palladium catalyzed decarbonylation of tertiary acid chlorides using a catalyst originating from Pd(dba)(2) and P(tBu)(3). Preliminary studies using pivaloyl chloride as the CO-precursor provided an alternative approach for the aminocarbonylation of 2-pyridyl tosylate derivatives using only 1.5 equiv of CO. Further design of the acid chloride CO-precursor led to the development of a new solid, stable, and easy to handle source of CO for chemical transformations. The synthesis of this CO-precursor also provided an entry point for the late installment of an isotopically carbon-labeled acid chloride for the subsequent release of gaseous [(13)C]CO. In combination with studies aimed toward application of CO as the limiting reagent, this method provided highly efficient palladium catalyzed aminocarbonylations with CO-incorporations up to 96%. The ex situ generated CO and the two-chamber system were tested in the synthesis of several compounds of pharmaceutical interest and all of them were labeled as their [(13)C]carbonyl counterparts in good to excellent yields based on limiting CO. Finally, palladium catalyzed decarbonylation at room temperature also allowed for a successful double carbonylation. This new protocol provides a facile and clean source of gaseous CO, which is safely handled and stored. Furthermore, since the CO is generated ex situ, excellent functional group tolerance is secured in the carbonylation chamber. Finally, CO is only generated and released in minute amounts, hence, eliminating the need for specialized equipment such as CO-detectors and equipment for running high pressure reactions.  相似文献   

20.
Reaction of preferential CO oxidation is studied over Rh-, Pt-catalysts in a flow reactor made of quartz. In the experiments, the following parameters were monitored: catalyst bed temperature at the inlet to the catalyst bed and the outlet, residual CO content (with IR-analyzer), residual O2 content (GC analysis). In CO absence from the reaction gas, H2 is easily oxidized over Rh and Pt, and the reaction proceeds in the mode of catalytic surface ignition (CSI) with the “hot spot” at the inlet to the catalyst bed. Appearance of CO in gas at temperatures at least below 200°C leads to slow deactivation of the catalysts. The possibility of CSI mode realization under PROX conditions over a Rh-catalyst is shown. The key component of the reaction in this case is O2—its residual content in CSI mode is less than 100 ppm. It is found that in CSI mode, a decrease in temperature increases selectivity of the reaction. Disestablishment of CSI (extinction) is accompanied over a Rh-catalyst by oscillations in catalytic activity. Possible mechanism of this oscillation phenomenon is pro-posed in connection with catalyst deactivation by CO at the inlet to the catalyst bed and with CSI at the outlet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号