首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Using density functional theory (DFT) calculations, we investigate the specie obtained from the stepwise on-cage P-doping of the silicon fullerene Si20H20. It is found that P-doping decreases the HOMO–LUMO energy gap of the fullerene and could be used to tailor its optical properties. Pairing of P atoms within the fullerene’s cage is not favored owing to the repulsion between the phosphorous lone-pairs and the preference for Si–P bond formation. Replacing all the SiH moieties with P affords the dodecahedral P20 fullerene. The fully oxidized P20O20 species is characterized by exceptionally high ionization potential (10.73 eV) and large electron affinity (6.71 eV).  相似文献   

2.
Photodissociation of aqueous formic acid has been investigated with the CASSCF, DFT, and MR-CI methods. Solvent effects are considered as a combination of the hydrogen-bonding interaction from explicit H2O molecules and the effects from the bulk surrounding H2O molecules using the polarizable continuum model. It is found that the hydrogen-bonding effect from the explicit water in the complex is the major factor to influence properties of aqueous formic acid, while the bulk surrounding H2O molecules has a noticeable influence on the structures of the complex. The direct C-O bond fission along the S1 pathway is predicted to be an important channel upon photolysis of aqueous formic acid at 200 nm, which is consistent with experimental observation that aqueous formic acid dissociates predominantly into fragments of HCO and OH. The existence of a dark channel upon photolysis of aqueous formic acid at 200 nm is assigned as fast relaxation from the S1 Franck-Condon geometry to the T1/S1 intersection and subsequent S1-->T1 intersystem crossing process. S1-->S0 internal conversion followed by molecular elimination to CO+H2O is the most probable primary process for formation of carbon monoxide, which was observed with considerable yield upon photolysis of aqueous formic acid at 253.7 nm.  相似文献   

3.
A rapid and reliable semiautomated method for the determination of formate in solid, aqueous, and oil matrices is presented. The use of a CO2 coulometer allows monitoring of carbonate removal and completion of formate reaction for maximum speed and reliability.  相似文献   

4.
Electrocatalytic reduction of CO_2 is a promising route for energy storage and utilization. Herein we synthesized SnO_2 nanosheets and supported them on N-doped porous carbon (N-PC) by electrodeposition for the first time. The SnO_2 and N-PC in the SnO_2@N-PC composites had exellent synergistic effect for electrocatalytic reduction of CO_2 to HCOOH. The Faradaic efficiency of HCOOH could be as high as 94.1% with a current density of 28.4 mA cm-2 in ionic liquid-MeCN system. The reaction mechanism was proposed on the basis of some control experiments. This work opens a new way to prepare composite electrode for electrochemical reduction of CO_2.  相似文献   

5.
Gas-phase decomposition of formic acid results in final products CO + H2O and CO2 + H2. Experimentally, the CO/CO2 ratio tends to be large, in contradiction with mechanism studies, which show almost equal activation energies for dehydration and decarboxylation. In this work, the influence of H2 on the decomposition mechanism of HCOOH was explored using ab initio calculations at the CCSD(T)/6-311++G**//MP2/6-311++G** level. It was found that, in the presence of H2, the reaction channels leading to CO + H2O are more than those leading to CO2 + H2. With competitive energy, H2 addition to HCOOH can reduce the latter into HCHO, which then dissociates into CO + H2 catalyzed by H2O. Compared to trans-HCOOH, cis-HCOOH and cis-C(OH)2, conformers required for decarboxylation, are less populated due to interactions with H2.  相似文献   

6.
7.
Of the many candidate fuels for low-temperature fuel cells, one of the most promising is formic acid. Although it has been investigated as such for nearly 50 years, rapid advances in recent times have begun to release the potential for formic acid fuel cells as high-performance, portable fuel cells with some products about to reach the market. In this review, we briefly summarise the recent advances in formic acid fuel cells.  相似文献   

8.
The aerobic oxidation of methanol to formic acid catalyzed by Au(20)(-) has been investigated quantum chemically using density functional theory with the M06 functional. Possible reaction pathways are examined taking account of full structure relaxation of the Au(20)(-) cluster. The proposed reaction mechanism consists of three elementary steps: (1) formation of formaldehyde from methoxy species activated by a superoxo-like anion on the gold cluster; (2) nucleophilic addition by the hydroxyl group of a hydroperoxyl-like complex to formaldehyde resulting in a hemiacetal intermediate; and (3) formation of formic acid by hydrogen transfer from the hemiacetal intermediate to atomic oxygen attached to the gold cluster. A comparison of the computed energetics of various elementary steps indicates that C-H bond dissociation of the methoxy species leading to formation of formaldehyde is the rate-determining step. A possible reaction pathway involving single-step hydrogen abstraction, a concerted mechanism, is also discussed. The stabilities of reactants, intermediates and transition state structures are governed by the coordination number of the gold atoms, charge distribution, cooperative effect and structural distortion, which are the key parameters for understanding the relationship between the structure of the gold cluster and catalytic activity in the aerobic oxidation of alcohols.  相似文献   

9.
AUROlite, consisting of gold supported on titania (picture shows extrudates in a steel net cage), is a robust catalyst for the production of catalyst-free HCOOH/NEt(3) adducts from H(2), CO(2), and neat NEt(3). Pure HCOOH is freed from the adducts by amine exchange.  相似文献   

10.
Research on Chemical Intermediates - Increased carbon dioxide (CO2) emissions from anthropogenic activities are a contributing factor to the growing global warming worldwide. The economical method...  相似文献   

11.
We performed ab initio quantum-chemical studies for the development of intra- and intermolecular interaction potentials for formic acid for use in molecular-dynamics simulations of formic acid molecular crystal. The formic acid structures considered in the ab initio studies include both the cis and trans monomers which are the conformers that have been postulated as part of chains constituting liquid and crystal phases under extreme conditions. Although the cis to trans transformation is not energetically favored, the trans isomer was found as a component of stable gas-phase species. Our decomposition scheme for the interaction energy indicates that the hydrogen-bonded complexes are dominated by the Hartree-Fock forces while parallel clusters are stabilized by the electron correlation energy. The calculated three-body and higher interactions are found to be negligible, thus rationalizing the development of an atom-atom pair potential for formic acid based on high-level ab initio calculations of small formic acid clusters. Here we present an atom-atom pair potential that includes both intra- and inter molecular degrees of freedom for formic acid. The newly developed pair potential is used to examine formic acid in the condensed phase via molecular-dynamics simulations. The isothermal compression under hydrostatic pressure obtained from molecular-dynamics simulations is in good agreement with experiment. Further, the calculated equilibrium melting temperature is found to be in good agreement with experiment.  相似文献   

12.
The catalytic activity of several samples based on nickel aluminides in methane conversion with carbon dioxide was studied. Nickel aluminides were prepared by the method of self-propagating high-temperature synthesis. The Ni3Al system containing the nickel metal phase exhibited high activity at temperatures above 1073 K. The systems based on Ni2Al3 and NiAl only containing intermetallic compound phases were inactive.  相似文献   

13.
The homogeneous catalytic system, based on water-soluble ruthenium(II)–TPPTS catalyst (TPPTS = meta-trisulfonated triphenylphosphine), selectively decomposes HCOOH into H2 and CO2 in aqueous solution. Although this reaction results in only two gas products, heterogeneous catalysts could be advantageous for recycling, especially for dilute formic acid solutions, or for mobile, portable applications. Several approaches have been used to immobilize/solidify the homogeneous ruthenium–TPPTS catalyst based on ion exchange, coordination and physical absorption. The activity of the various heterogeneous catalysts for the decomposition of formic acid has been determined. These heterogenized catalysts offer the advantage of easy catalyst separation/recycling in dilute formic acid, or for mobile, portable applications.  相似文献   

14.
花生壳碳基固体酸催化环己烯与甲酸酯化反应(英文)   总被引:1,自引:0,他引:1  
碳基固体酸是一种可替代液体质子酸的无定形碳材料,具有酸密度大、催化活性高等优点.花生壳是农业废弃物,以其为原料制备碳基固体酸具有成本低、原料可再生和环境友好等优点.甲酸环己酯是重要的化工产品,可用于香料和涂料工业.传统的甲酸环己酯制备方法是以环己醇和甲酸为原料,在酸催化条件下进行酯化反应而得.近年来,随着环己烯的大规模生产,利用环己烯与甲酸直接酯化制备甲酸环己酯引起广泛关注.此外,甲酸环己酯还可通过水解反应转变为环己醇.环己醇可以进一步转化为己二酸和己内酰胺,从而用于化纤工业中尼龙-6和尼龙-66的生产.目前,工业上采用环己烯水合反应制备环己醇,由于热力学限制,并受到环己烯与水相容性差的影响,环己烯单程转化率仅为~10%,循环量较大,能耗很高.以环己烯为原料,通过甲酸环己酯制备环己醇克服了上述环己烯直接水合的缺点,具有很好的发展前景.我们研究组使用HZSM-5分子筛作为催化剂,采用"一锅法"由环己烯经甲酸环己酯制备环己醇,环己醇收率可达40%.但是环己烯在酸性条件下可发生低聚反应,生成的副产物会堵塞HZSM-5孔道,造成催化剂失活.本文在前述研究基础上,以花生壳为原料,经过碳化、磺化过程制备得到了碳基固体酸PSCSA.采用傅里叶变换红外光谱(FT-IR)、扫描电子显微镜(SEM)、X射线衍射(XRD)、拉曼光谱(Raman)、热重分析(TG)、X射线光电子能谱(XPS)和元素分析等方法表征了PSCSA的结构、微观形貌、热稳定性以及酸性质,考察了其催化环己烯与甲酸酯化反应性能,并与几种常见的固体酸催化剂进行了比较.FT-IR结果显示,经磺化后,PSCSA表面出现了–SO3H和–COOH基团.XPS结果则说明PSCSA表面所有的S元素均属于–SO3H,可利用元素分析测定S含量,进而得到–SO3H密度.此外,由于花生壳属于天然物质,成分并不均一,因此PSCSA的SEM照片中不同部位颗粒的微观形貌差异较大.采用PSCSA作为催化剂,考察了其催化环己烯与甲酸酯化反应性能,优化了反应条件.在酸/烯摩尔比为3/1,PSCSA用量0.07 g/mL环己烯,413 K反应1 h,环己烯转化率为88.4%,甲酸环己酯选择性为97.3%;副产物包括环己醇、二聚环己烯和环己基醚等.比较了PSCSA与几种常用固体酸如HZSM-5、离子交换树脂Amberlyst-15和Nafion NR50的催化性能,其中,Amberlyst-15催化性能最优,在393 K下反应,环己烯转化率亦达91.5%,甲酸环己酯选择性98.1%;但是,高昂的价格限制了其在工业上的大规模应用.与HZSM-5相比,PSCSA催化的环己烯与甲酸酯化反应的初始速率较低,反应时间超过30 min后,环己烯转化率迅速增加.在本反应中,PSCSA在甲酸存在条件下发生溶胀,使得大量的甲酸分子插入到碳材料本体中;而环己烯与甲酸具有较好的相容性,因此环己烯可以进入到碳材料本体中,与活性中心–SO3H充分接触,从而具有较高的反应速率.并且,由于溶胀需要一定的时间,在反应初期溶胀不充分时,环己烯、甲酸与活性中心接触有限,因此反应较慢;反应一定时间后,PSCSA充分溶胀,更多的–SO3H参与到反应中,反应速率加快.PSCSA重复使用性较好,第3次使用时环己烯转化率为68.6%;继续使用,催化剂不再失活.PSCSA在反应初期失活是–SO3H流失造成的.构成PSCSA的多环芳香烃可以部分溶解到溶剂中,进而带走其包含的–SO_3H.PSCSA的后期活性稳定则说明可以流失的活性中心是有限的.  相似文献   

15.
We report the first theoretical study of noncovalent and covalent interactions in formic acid (FA)-SO(2) complexes. Using ab initio and DFT model chemistries, five stable noncovalent complexes were identified, as well as a covalent adduct, formic sulfurous anhydride HOSO(2)CHO. syn-FA is predicted to form two nonplanar bidentate complexes with SO(2): the more stable one contains a normal hydrogen bond donated by OH, and the less stable one contains a blue-shifted hydrogen bond donated by CH. Both are stabilized by charge transfer from FA to SO(2). anti-FA forms three planar complexes of nearly equal energy containing OH-to-SO(2) hydrogen bonds. Formic sulfurous anhydride forms via an endothermic concerted cycloaddition. Natural bond orbital analysis showed that the bidentate SO(2)-FA complexes are stabilized by n → π* donation from FA to SO(2), and back-donation from SO(2) n and π* orbitals into FA σ(OH)* or σ(CH)* orbitals. The bidentate formic acid-SO(2) complex that contains an O-H···O hydrogen bond is more stable than the similar nitric acid-SO(2) complex. The latter contains a stronger hydrogen bond but shows no O→S charge transfer interaction.  相似文献   

16.
17.
V-substituted polymolybdenum phosphoric acid (PVxMo) supported on mesoporous silica was prepared and investigated as a catalyst for the oxidation of glycerol to formic acid in a batch operation. Different synthetic methods for PVxMo supported on mesoporous silica were compared. Detailed characterizations of the final products were carried out by N2 adsorption and desorption, XRD, HR-TEM, SEM, ICP-OES, XANES, NH3-TPD, and FTIR to identify the chemical properties and the porous structure of silica-supported PVxMo, as well as the strong interactions between PVxMo with the silica skeleton. These critical properties explain the bifunctionality of silica-supported PVxMo as a catalyst for the selective oxidation of glycerol to formic acid with standing stability.  相似文献   

18.
19.
20.
The structures and stability of C-doped boron fullerenes with the three-dimensional arrangement of non-classical pentacoordinated quasi-flat carbon centers were studied using the density functional theory (DFT) B3LYP/6-311+G(d,p) method. The doping with carbon atoms in apical positions above the five-membered rings stabilizes the spherical boron fullerene forms due to multicenter interactions of pz-orbitals of the carbons and adjacent boron atoms. Increasing in the size of the fullerene cluster is accompanied by change in the bonding pattern and by flattening of the hypercoordinated carbon centers. Endohedral metal atoms significantly affect on the structure and stability of the fullerene systems with hypercoordinated carbon centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号