首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
两种湍流模型时域颤振计算方法研究   总被引:2,自引:2,他引:0  
采用时域计算分析方法进行了机翼跨音速颤振特性研究。在结构运动网格的基础上,采用格点格式有限体积方法进行空间离散和双时间全隐式方法进行时间推进求解雷诺平均N-S方程。针对流动粘性分别应用了SST湍流模型和SSG雷诺应力模型,通过对跨音速标模算例AGARD445.6机翼的计算结果与实验值的对比分析,其中应用SST湍流模型得到的颤振速度与实验值最为接近,特别是在跨音速段平均相对误差在3%以内;并且计算结果整体上反映了跨音速颤振"凹坑"物理特性,验证了方法的有效性。  相似文献   

2.
高压捕获翼构型亚跨超流动特性数值研究   总被引:1,自引:1,他引:0  
为研究高压捕获翼布局在亚跨超条件下的流动特性, 选取圆锥?圆台机体组合捕获翼概念构型, 在马赫数0.3 ~ 3速域范围内, 选取典型状态点, 采用数值模拟在 0°攻角条件下进行了计算和分析. 结果表明, 在整个速域范围内, 由于机体与捕获翼在对称面附近的垂向距离最小, 因此二者之间的气动干扰最为明显, 且沿展向逐渐减弱. 同时, 随马赫数增大, 机体与捕获翼间的流场结构明显不同, 具体表现为: 当Ma<0.5时, 未出现流动分离现象, 当Ma>0.5时, 机体后段开始出现明显的流动分离, 由于捕获翼与机体形成先收缩后扩张的等效通道, 捕获翼下表面和机体上表面的压力均先减小后增大; 进入跨声速速域后, 在捕获翼的影响下, 流动分离更加明显, 机体与捕获翼之间开始出现激波, 并且与分离区相互作用, 同时出现激波串, 捕获翼下表面产生明显的压力波动现象, Ma=1.5时, 通道内激波位置基本到达机体尾部, 分离区基本消失; 当Ma>2以后, 整个流场呈现以激波为主导的结构形式, 捕获翼下表面和机体上表面的压力分布逐渐趋于平缓.   相似文献   

3.
Coupling interface between computational fluid dynamics (CFD) and computational structural dynamics (CSD) is required to provide exchange of information for the simulation of fluid–structure interaction (FSI) phenomena. Accuracy and consistency of information exchanged through coupling interface between the independent CFD and CSD solvers plays a central role in the simulation and prediction of FSI phenomenon, like flutter. In this paper validation of an implemented coupling interface methodology is presented for subsonic, transonic and near supersonic mach regime. The test case chosen for this purpose is the flutter of AGARD445.6 standard I‐wing weakened model configuration for subsonic to near transonic flow regime. Gambit® and Fluent® are used for CFD grid generation and solution of fluid dynamic equations, respectively. CSD modeling and simulation are provided by numerical time integration of modal dynamic equations derived through the finite element modeling in ANSYS® environment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Separated Flow and Buffeting Control   总被引:2,自引:0,他引:2  
In transonic flow conditions, the shock wave/turbulent boundary layer interaction and the flow separations on the upper wing surfaces of civil aircraft induce flow instabilities, ‘buffet’ and then structural vibrations, ‘buffeting’. Buffeting can greatly affect aerodynamic behavior. The buffeting phenomenon appears when the aircraft's Machnumber or angle of attack increases. This phenomenon limits the aircraft's flight envelope. The objectives of this study are to cancel out or decrease the aerodynamic instabilities (unsteady separation, movement of the shock position) due to this type of flow by using control systems. The following actuators can be used: ‘Vortex Generators’ situated upstream of the shock position, a ‘Bump’ located at the shock position, and a new moving part designed by ONERA, situated on the trailing edge of the wing, the ‘Trailing Edge Deflector’ or TED. It looks like an adjustable ‘Divergent Trailing Edge’. It is an active actuator and can take different deflections or be driven by dynamic movements up to 250 Hz. Tests were performed in transonic 2D flow with models well equipped with unsteady pressure transducers. For high lift coefficients, a selected static position of the ‘Trailing Edge Deflector’ increases the wing's aerodynamic performances and delays the onset of buffet. Furthermore, in 2D flow buffet conditions, the ‘Trailing Edge Deflector’, driven by a closed-loop active control using the measurements of the unsteady wall static pressures, can greatly reduce buffet. The aerodynamic performances are not improved to the same extent by the bump actuator. From our experience, there is no effect on buffet or separated flow because of the incorrect positioning of the bump. All that can be observed is a local improvement on the intensity of the shock wave when the bump is very precisely situated at the shock position. Vortex generators have a great impact on the separated flow. The separated flow instabilities are greatly reduced and buffet is totally controlled even for strong instabilities. The aerodynamic performances of the airfoil are also greatly improved.  相似文献   

5.
Nonlinear dynamic behaviors of an aeroelastic airfoil with free-play in transonic air flow are studied. The aeroelastic response is obtained by using time-marching approach with computational fluid dynamics (CFD) and reduced order model (ROM) techniques. Several standardized tests of transonic flutter are presented to validate numerical approaches. It is found that in time-marching approach with CFD technique, the time-step size has a significant effect on the calculated aeroelastic response, especially for cases considering both structural and aerodynamic nonlinearities. The nonlinear dynamic behavior for the present model in transonic air flow is greatly different from that in subsonic regime where only simple harmonic oscillations are observed. Major features of the responses in transonic air flow at different flow speeds can be summarized as follows. The aeroelastic responses with the amplitude near the free-play are dominated by single degree of freedom flutter mechanism, and snap-though phenomenon can be observed when the air speed is low. The bifurcation diagram can be captured by using ROM technique, and it is observed that the route to chaos for the present model is via period-doubling, which is essentially caused by the free-play nonlinearity. When the flow speed approaches the linear flutter speed, the aeroelastic system vibrates with large amplitude, which is dominated by the aerodynamic nonlinearity. Effects of boundary layer and airfoil profile on the nonlinear responses of the aeroelastic system are also discussed.  相似文献   

6.
A check on the energy method of predicting blade transonic stall flutter   总被引:1,自引:0,他引:1  
An improved structural dynamic model of an oscillating blade in two degrees of freedom is combined with an unsteady aerodynamic model for the transonic flow about a cascade with separation, which results in a coupled system. The system is solved in an iterative way between the two models. As a check on the current energy methods, the stall flutter boundaries for two real rotors are predicted by using the present method and the results are compared with the experiments and those predicted by using an energy method.  相似文献   

7.
An enhanced goal‐oriented mesh adaptation method is presented based on aerodynamic functional total derivatives with respect to mesh nodes in a Reynolds‐Averaged Navier‐Stokes (RANS) finite‐volume mono‐block and non‐matching multi‐block‐structured grid framework. This method falls under the category of methods involving the adjoint vector of the function of interest. The contribution of a Spalart–Allmaras turbulence model is taken into account through its linearization. Meshes are adapted accordingly to the proposed indicator. Applications to 2D RANS flow about a RAE2822 airfoil in transonic, and detached subsonic conditions are presented for the drag coefficient estimation. The asset of the proposed method is patent. The obtained 2D anisotropic mono‐block mesh well captures flow features as well as global aerodynamic functionals. Interestingly, the constraints imposed by structured grids may be relaxed by the use of non‐matching multi‐block approach that limits the outward propagation of local mesh refinement through all of the computational domain. The proposed method also leads to accurate results for these multi‐block meshes but at a fraction of the cost. Finally, the method is also successfully applied to a more complex geometry, namely, a mono‐block mesh in a 3D RANS transonic flow about an M6 wing. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
A theory is presented for unsteady two-dimensional potential transonic flow in cascades of compressor and turbine blades using a mesh of triangular finite elements. The theory leads to a computer program, FINSUP, which is fast and has moderate storage requirements, so that it can be run on a personal computer. Comparisons with other theories in special cases show that the program is accurate in subsonic flow, and that in supersonic flow, although the wave effects are smeared by the numerical process, the results for overall blade force and moment have acceptable accuracy. The program is useful for engineering assessment of unstalled flutter of actual compressor and turbine blades.  相似文献   

9.
An extensive experimental study into the nature of the separated flows on the blade suction surface of modern transonic fans is described in this paper. The study was a subtask of a larger experimental effort focused on blade flutter excited by flow separation in the blade tip region. The tip sections of airfoils on transonic fan blades are designed for precompression and consequently they differ from sections on the rest of the blade. The blade tip section was modeled by a low aspect ratio blade and therefore most of the blade tested was exposed to the secondary flow effects. The aim of this work was to supply reliable data on flow separation on transonic fan blades for validation of future analytical studies. The experimental study focused on two visualization techniques: surface flow visualization using dye oils and schlieren (and shadowgraph) flow visualization. The following key observations were made during the study. For subsonic inlet flow, the flow on the suction surface of the blade was separated over a large portion of the blade, and the separated area increased with increasing inlet Mach number. For the supersonic inlet flow condition, the flow was attached from the leading edge up to the point where a bow shock from the upper neighboring blade imposed on the blade surface. Downstream, there was a separated flow region in which air flowed in the direction opposite the inlet flow. Finally, past the separated flow region, the flow reattached to the blade surface. For subsonic inlet flow, the low cascade solidity resulted in an increased area of separated flow. For supersonic flow conditions, the low solidity resulted in an improvement in flow over the suction surface.  相似文献   

10.
We establish the existence and stability of multidimensional steady transonic flows with transonic shocks through an infinite nozzle of arbitrary cross-sections, including a slowly varying de Laval nozzle. The transonic flow is governed by the inviscid potential flow equation with supersonic upstream flow at the entrance, uniform subsonic downstream flow at the exit at infinity, and the slip boundary condition on the nozzle boundary. Our results indicate that, if the supersonic upstream flow at the entrance is sufficiently close to a uniform flow, there exists a solution that consists of a C 1,α subsonic flow in the unbounded downstream region, converging to a uniform velocity state at infinity, and a C 1,α multidimensional transonic shock separating the subsonic flow from the supersonic upstream flow; the uniform velocity state at the exit at infinity in the downstream direction is uniquely determined by the supersonic upstream flow; and the shock is orthogonal to the nozzle boundary at every point of their intersection. In order to construct such a transonic flow, we reformulate the multidimensional transonic nozzle problem into a free boundary problem for the subsonic phase, in which the equation is elliptic and the free boundary is a transonic shock. The free boundary conditions are determined by the Rankine–Hugoniot conditions along the shock. We further develop a nonlinear iteration approach and employ its advantages to deal with such a free boundary problem in the unbounded domain. We also prove that the transonic flow with a transonic shock is unique and stable with respect to the nozzle boundary and the smooth supersonic upstream flow at the entrance.  相似文献   

11.
Computational fluid dynamics (CFD) based unsteady aerodynamic reduced-order model (ROM) can offer significant improvements to the efficiency of transonic aeroelastic analysis. To construct a ROM based on mode shapes, one run of CFD solver is needed to compute aerodynamic responses corresponding to mode excitations. When mode shapes change with structure, another run of the CFD solver is required to construct the new ROM. The typically large computational cost associated with repeated runs of the CFD solver impedes the application of existing unsteady aerodynamic reduced-order modeling methods to transonic aeroelastic design optimization and aeroelastic uncertainty analysis. This paper demonstrates a method that can replace the CFD solver used in the process of existing unsteady aerodynamic reduced-order modeling. It can produce aerodynamic responses corresponding to mode excitations for arbitrary mode shapes within a few seconds. Computational cost can be reduced by two orders of magnitude using the mode excitations and the corresponding aerodynamic responses computed by the method to construct the ROMs used for flutter analyses in aeroelastic design optimization or aeroelastic uncertainty analysis in transonic regime compared with the existing unsteady aerodynamic reduced-order modeling methods. Results show that the method can accurately produce the aerodynamic responses corresponding to the mode excitations and predict the flutter characteristics of AGARD 445.6 wings root-attached in three different ways.  相似文献   

12.
The aeroelastic stability of cantilevered plates with their clamped edge oriented both parallel and normal to subsonic flow is a classical fluid–structure interaction problem. When the clamped edge is parallel to the flow the system loses stability in a coupled bending and torsion motion known as wing flutter. When the clamped edge is normal to the flow the instability is exclusively bending and is referred to as flapping flag flutter. This paper explores the stability of plates during the transition between these classic aeroelastic configurations. The aeroelastic model couples a classical beam structural model to a three-dimensional vortex lattice aerodynamic model. The aeroelastic stability is evaluated in the frequency domain and the flutter boundary is presented as the plate is rotated from the flapping flag to the wing configuration. The transition between the flag-like and wing-like instability is often abrupt and the yaw angle of the flow for the transition is dependent on the relative spacing of the first torsion and second bending natural frequencies. This paper also includes ground vibration and aeroelastic experiments carried out in the Duke University Wind Tunnel that confirm the theoretical predictions.  相似文献   

13.
Current and future trends in the aerospace industry leverage on the potential benefits provided by lightweight materials that can be tailored to realize desired mechanical characteristics when loaded. For aircraft design, the deployment of aeroelastic tailoring is hindered by the need to re-compute, for any possible modification of the structure, the dependence of the aerodynamic field on the underlying structural properties. To make progress in this direction, the work presents a rapid computational fluid dynamics based aeroelastic tool which is built around a reduced order model for the aerodynamics that is updated for any modification of the structure by using the structural dynamics reanalysis method. The aeroelastic tailoring tool is demonstrated in transonic flow for the AGARD 445.6 wing, suitably modified with composite materials. It was found that the proposed method provides accurate engineering predictions for the aeroelastic response and stability when the structure is modified from the baseline model.  相似文献   

14.
For reliable computational predictions of transonic flows, it is important to resolve the significant effects of physical variations on the shock wave locations. The resulting discontinuities in probability space require extremum diminishing uncertainty quantification to avoid overshoots and undershoots in the response surface approximation. In this paper, the extremum diminishing concept in probability space is extended to infinite parameter domains using inverse distance weighting interpolation of deterministic samples. Based on results for three analytical test functions, the combination of Halton sampling and power parameter limit value c → ∞ is selected. The approach is employed to model spatial-free-stream velocity fluctuations in the highly sensitive transonic AGARD 445.6 wing test case in an up to ten-dimensional probability space. The 0.5% input variations are amplified to a coefficient of variation for the wave drag of cvD?=?9.58% in combination with an increase of the mean drag by 1.75% compared to the deterministic value.  相似文献   

15.
张伟伟  王博斌  叶正寅 《力学学报》2010,42(6):1023-1033
事先建立一个低阶的非线性、非定常气动力模型是开展非线性流场中气动弹性问题研究的一个捷径. 基于CFD方法, 通过计算结构在流场中自激振动的响应来获得系统的训练数据. 采用带输出反馈的循环RBF神经网络, 建立时域非线性气动力降阶模型.耦合结构运动方程和非线性气动力降阶模型, 采用杂交的线性多步方法计算结构在不同速度(动压)下的响应历程, 从而获得模型极限环随速度(动压)变化的特性. 两个典型的跨音速极限环型颤振算例表明, 基于气动力降阶模型方法的计算结果与直接CFD仿真结果吻合很好, 与后者相比其将计算效率提高了1~2个数量级.   相似文献   

16.
17.
18.
翼型跨声速气动特性的不确定性及全局灵敏度分析   总被引:5,自引:0,他引:5  
针对马赫数和仰角的随机不确定性会导致气动性能波动的现象, 采用非嵌入式的混沌多项式方法对绕NACA0012 翼型跨声速随机气动特性进行不确定性及全局灵敏度分析. 具体分析了飞行状态的不确定性对气动载荷分布、流场及气动力系数的影响并通过全局灵敏度分析找出重要因素. 不确定性分析结果表明翼型上表面的激波以及激波后分离泡是造成气动性能剧烈波动的主要原因. 灵敏度分析结果表明在跨声速区域马赫数对激波处气动性能影响最大, 此外, 虽然马赫数和仰角相互耦合作用对气动力系数贡献比较小, 但对于激波位置处的流场, 这种互耦合作用不可忽略.   相似文献   

19.
Recent results from flutter experiments of the supercritical airfoil NLR 7301 at flow conditions close to the transonic dip are presented. The airfoil was mounted with two degrees-of-freedom in an adaptive solid-wall wind tunnel, and boundary-layer transition was tripped. Flutter boundaries exhibiting a transonic dip were determined and limit-cycle oscillations (LCOs) were measured. The local energy exchange between the fluid and the structure during LCOs is examined and leads to the following findings: at supercritical Mach numbers below that of the transonic-dip minimum the presence of a shock-wave and its dynamics destabilizes the aeroelastic system such that the decreasing branch of the transonic dip develops. At higher Mach numbers the shock-wave motion has a stabilizing effect such that the flutter boundary increases to higher flutter-speed indices with increasing Mach number. Amplified oscillations near this branch of the flutter boundary obtain energy from the flow mainly due to the dynamics of a trailing-edge flow separation. A slight nonlinear amplitude dependency of the shock motion and a possibly occurring boundary-layer separation cause the amplitude limitation of the observed LCOs. The impact of the findings on the numerical simulation of these phenomena is discussed.  相似文献   

20.
利用变弯度机翼模型及相关的风洞实验平台,开展了以弯度变化速率影响为重点的机翼非定常特性研究。实验结果显示,在低Re数(~105)下,机翼弯度非定常变化得到的升阻力系数曲线与准定常条件下的结果存在显著差异。具体表现为:准定常状态下,曲线表现出明显的可逆性;而弯度非定常变化时,曲线在弯度递增区和递减区之间存在明显的迟滞效应,而且随着变形速率的增加,这种迟滞也越明显。流场显示结果表明,这种小St数下出现的流动迟滞是由于弯度变形导致的流动分离的分离点相对机翼运动迟滞所造成的。这说明弯度变化时,分离流场结构的响应时间尺度与弯度变化周期相当,也揭示了该条件下机翼弯度变化对流动的抑制作用主要是通过改变分离区的大小来实现的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号