首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
This paper describes a method for calculating the similarity between pairs of chemical structures represented by 3D molecular graphs. The method is based on a graph matching procedure that accommodates conformational flexibility by using distance ranges between pairs of atoms, rather than fixing the atom pair distances. These distance ranges are generated using triangle and tetrangle bound smoothing techniques from distance geometry. The effectiveness of the proposed method in retrieving other compounds of like biological activity is evaluated, and the results are compared with those obtained from other, 2D-based methods for similarity searching.  相似文献   

2.
3.
This paper presents an exploratory study of a novel method for flexible 3-D similarity searching based on autocorrelation vectors and smoothed bounded distance matrices. Although the new approach is unable to outperform an existing 2-D similarity searching in terms of enrichment factors, it is able to retrieve different compounds at a given percentage of the hit-list and so may be a useful adjunct to other similarity searching methods.  相似文献   

4.
5.
We present a new method (fFLASH) for the virtual screening of compound databases that is based on explicit three-dimensional molecular superpositions. fFLASH takes the torsional flexibility of the database molecules fully into account, and can deal with an arbitrary number of conformation-dependent molecular features. The method utilizes a fragmentation-reassembly approach which allows for an efficient sampling of the conformational space. A fast clique-based pattern matching algorithm generates alignments of pairs of adjacent molecular fragments on the rigid query molecule that are subsequently reassembled to complete database molecules. Using conventional molecular features (hydrogen bond donors and acceptors, charges, and hydrophobic groups) we show that fFLASH is able to rapidly produce accurate alignments of medium-sized drug-like molecules. Experiments with a test database containing a diverse set of 1780 drug-like molecules (including all conformers) have shown that average query processing times of the order of 0.1 seconds per molecule can be achieved on a PC.  相似文献   

6.
7.
In a database of about 2000 approved drugs, represented by 10(5) structural conformers, we have performed 2D comparisons (Tanimoto coefficients) and 3D superpositions. For one class of drugs the correlation between structural resemblance and similar action was analyzed in detail. In general Tanimoto coefficients and 3D scores give similar results, but we find that 2D similarity measures neglect important structural/funtional features. Examples for both over- and underestimation of similarity by 2D metrics are discussed. The required additional effort for 3D superpositions is assessed by implementation of a fast algorithm with a processing time below 0.01 s and a more sophisticated approach (0.5 s per superposition). According to the improvement of similarity detection compared to 2D screening and the pleasant rapidity on a desktop PC, full-atom 3D superposition will be an upcoming method of choice for library prioritization or similarity screening approaches.  相似文献   

8.
Similarity-based methods for virtual screening are widely used. However, conventional searching using 2D chemical fingerprints or 2D graphs may retrieve only compounds which are structurally very similar to the original target molecule. Of particular current interest then is scaffold hopping, that is, the ability to identify molecules that belong to different chemical series but which could form the same interactions with a receptor. Reduced graphs provide summary representations of chemical structures and, therefore, offer the potential to retrieve compounds that are similar in terms of their gross features rather than at the atom-bond level. Using only a fingerprint representation of such graphs, we have previously shown that actives retrieved were more diverse than those found using Daylight fingerprints. Maximum common substructures give an intuitively reasonable view of the similarity between two molecules. However, their calculation using graph-matching techniques is too time-consuming for use in practical similarity searching in larger data sets. In this work, we exploit the low cardinality of the reduced graph in graph-based similarity searching. We reinterpret the reduced graph as a fully connected graph using the bond-distance information of the original graph. We describe searches, using both the maximum common induced subgraph and maximum common edge subgraph formulations, on the fully connected reduced graphs and compare the results with those obtained using both conventional chemical and reduced graph fingerprints. We show that graph matching using fully connected reduced graphs is an effective retrieval method and that the actives retrieved are likely to be topologically different from those retrieved using conventional 2D methods.  相似文献   

9.
10.
Several algorithms have been described in the literature for protein identification by searching a sequence database using mass spectrometry data. In some approaches, the experimental data are peptide molecular weights from the digestion of a protein by an enzyme. Other approaches use tandem mass spectrometry (MS/MS) data from one or more peptides. Still others combine mass data with amino acid sequence data. We present results from a new computer program, Mascot, which integrates all three types of search. The scoring algorithm is probability based, which has a number of advantages: (i) A simple rule can be used to judge whether a result is significant or not. This is particularly useful in guarding against false positives. (ii) Scores can be compared with those from other types of search, such as sequence homology. (iii) Search parameters can be readily optimised by iteration. The strengths and limitations of probability-based scoring are discussed, particularly in the context of high throughput, fully automated protein identification.  相似文献   

11.
12.
In this paper we propose a new method based on measurements of the structural similarity for the clustering of chemical databases. The proposed method allows the dynamic adjustment of the size and number of cells or clusters in which the database is classified. Classification is carried out using measurements of structural similarity obtained from the matching of molecular graphs. The classification process is open to the use of different similarity indexes and different measurements of matching. This process consists of the projection of the obtained measures of similarity among the elements of the database in a new space of similarity. The possibility of the dynamic readjustment of the dimension and characteristic of the projection space to adapt to the most favorable conditions of the problem under study and the simplicity and computational efficiency make the proposed method appropriate for its use with medium and large databases. The clustering method increases the performance of the screening processes in chemical databases, facilitating the recovery of chemical compounds that share all or subsets of common substructures to a given pattern. For the realization of the work a database of 498 natural compounds with wide molecular diversity extracted from SPECS and BIOSPECS B.V. free database has been used.  相似文献   

13.
Relational databases are the current standard for storing and retrieving data in the pharmaceutical and biotech industries. However, retrieving data from a relational database requires specialized knowledge of the database schema and of the SQL query language. At Anadys, we have developed an easy-to-use system for searching and reporting data in a relational database to support our drug discovery project teams. This system is fast and flexible and allows users to access all data without having to write SQL queries. This paper presents the hierarchical, graph-based metadata representation and SQL-construction methods that, together, are the basis of this system's capabilities.  相似文献   

14.
Journal of Computer-Aided Molecular Design - The line notations of chemical structures are more compact than those of graphs and connection tables, so they can be useful for storing and...  相似文献   

15.
Recognition of small molecules by proteins depends on three-dimensional molecular surface complementarity. However, the dominant techniques for analyzing the similarity of small molecules are based on two-dimensional chemical structure, with such techniques often outperforming three-dimensional techniques in side-by-side comparisons of correlation to biological activity. This paper introduces a new molecular similarity method, termed morphological similarity (MS), that addresses the apparent paradox. Two sets of molecule pairs are identified from a set of ligands whose protein-bound states are known crystallographically. Pairs that bind the same protein sites form the first set, and pairs that bind different sites form the second. MS is shown to separate the two sets significantly better than a benchmark 2D similarity technique. Further, MS agrees with crystallographic observation of bound ligand states, independent of information about bound states. MS is efficient to compute and can be practically applied to large libraries of compounds.  相似文献   

16.
Recently a method (RASCAL) for determining graph similarity using a maximum common edge subgraph algorithm has been proposed which has proven to be very efficient when used to calculate the relative similarity of chemical structures represented as graphs. This paper describes heuristics which simplify a RASCAL similarity calculation by taking advantage of certain properties specific to chemical graph representations of molecular structure. These heuristics are shown experimentally to increase the efficiency of the algorithm, especially at more distant values of chemical graph similarity.  相似文献   

17.
Summary Two new computational tools, PRO_PHARMEX and PRO_SCOPE, for use in active-site-directed searching of 3D databases are described. PRO_PHARMEX is a flexible, graphics-based program facilitating the extraction of pharmacophores from the active site of a target macromolecule. These pharmacophores can then be used to search a variety of databases for novel lead compounds. Such searches can often generate many hits of varying quality. To aid the user in setting priorities for purchase, synthesis or testing, PRO_SCOPE can be used to dock molecules rapidly back into the active site and to assign them a score using an empirical scoring function correlated to the free energy of binding. To illustrate how these tools can add value to existing 3D database software, their use in the design of novel thrombin inhibitors is described.  相似文献   

18.
This paper reports an evaluation of both graph-based and fingerprint-based measures of structural similarity, when used for virtual screening of sets of 2D molecules drawn from the MDDR and ID Alert databases. The graph-based measures employ a new maximum common edge subgraph isomorphism algorithm, called RASCAL, with several similarity coefficients described previously for quantifying the similarity between pairs of graphs. The effectiveness of these graph-based searches is compared with that resulting from similarity searches using BCI, Daylight and Unity 2D fingerprints. Our results suggest that graph-based approaches provide an effective complement to existing fingerprint-based approaches to virtual screening.  相似文献   

19.
Efficient recognition of tautomeric compound forms in large corporate or commercially available compound databases is a difficult and labor intensive task. Our data indicate that up to 0.5% of commercially available compound collections for bioscreening contain tautomers. Though in the large registry databases, such as Beilstein and CAS, the tautomers are found in an automated fashion using high-performance computational technologies, their real-time recognition in the nonregistry corporate databases, as a rule, remains problematic. We have developed an effective algorithm for tautomer searching based on the proprietary chemoinformatics platform. This algorithm reduces the compound to a canonical structure. This feature enables rapid, automated computer searching of most of the known tautomeric transformations that occur in databases of organic compounds. Another useful extension of this methodology is related to the ability to effectively search for different forms of compounds that contain ionic and semipolar bonds. The computations are performed in the Windows environment on a standard personal computer, a very useful feature. The practical application of the proposed methodology is illustrated by several examples of successful recovery of tautomers and different forms of ionic compounds from real commercially available nonregistry databases.  相似文献   

20.
This paper discusses algorithmic techniques for measuring the degree of similarity between pairs of three-dimensional (3-D) chemical molecules represented by interatomic distance matrices. A comparison of four methods for the calculation of 3-D structural similarity suggests that the most effective one is a procedure that identifies pairs of atoms, one from each of the molecules that are being compared, that lie at the center of geometrically-related volumes of 3-D space. This atom mapping method enables the calculation of a wide range of types of intermolecular similarity coefficient, including measures that are based on physicochemical data. Massively-parallel implementations of the method are discussed, using the AMT Distributed Array Processor, that achieve a substantial increase in performance when compared with a sequential implementation on a UNIX workstation. Current work involves the use of angular information and the extension of the method to field-based similarity searching. Similarity searching in 3-D macromolecules is effected by the use of a maximal common subgraph (MCS) isomorphism algorithm with a novel, graph-based representation of the tertiary structures of proteins. This algorithm is being used to identify similarities between the 3-D structures of proteins in the Brookhaven Protein Data Bank; its use is exemplified by searches involving the NAD-binding fold motif.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号