首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Catalytic oxidation of water by Ru(bpy)3 3+ in the presence of Co2+ ions, well known in homogeneous solution, has been investigated in thin Nafion layers. Nafion layers on ITO electrodes were equilibrated with Ru(bpy)3 2+. Ru(bpy)3 3+ was produced by electrochemical oxidation after which the electrode was transferred into the reaction cell containing buffered Co2+ solution. The build up of Ru(bpy)3 2+ absorbance at 454 nm was followed spectrophotometrically. The reaction rate is proportional to [Ru(III)], [Co2+] and [HPO4 2-]. We found no evidence for a pH effect in the range 6–8, and no inhibition by Ru(II). A limiting rate of formation of Ru(II) is observed at high Co2+ or phosphate ion concentrations. At high local concentration of the Ru complex in the Nafion layer (~ 0.5 M), two Ru(II) formation processes are observed, their rates differ by one order, but other features (effects of [Ru(III)], [Ru(II)], [Co2+], phosphate and pH) remain unchanged. These results are in contrast with homogeneous solution where the rate of build up of Ru(II) has been previously reported to be proportional to [Ru(III)], [Co2+] and [OH-]2, and inversely proportional to [Ru(II)]. A mechanism is proposed which accounts for these observations.  相似文献   

2.
Abstract— Single-strand break formation and biological deactivation of plasmid pBR322 DNA in the presence of tris(2,2′-bipyridyl)-ruthenium(II), Ru(bpy)2/3;+, and K2S2O8, upon irradiation with visible light(400–500 nm), were studied in aqueous solution at room temperature. Conditions of complete binding of Ru(bpy)2/3;+ to the strand were employed. The damage is initiated mainly by the SO2/3;; radical anion. Under anoxic conditions at a ratio of nucleotide to sensitizer concentrations (N/S) of 18 and S2O2/8- concentrations of 0.5 mM the quantum yield of single-strand break (ssb) formation is φssb= 8.4 times 10-3 while that of biological deactivation (bd) is Øbd= 7.6 times 10-3ssb= 5.2 times 10-36.4 times 10-3, 6.0 times 10-3 and φbd= 4.2 times 10-3, 5.2 times 10-3, 4.8 times 10-3 at N/S=3, 6, and 9, respectively). The quantum yields are approximately 2.5 times smaller in air-saturated solutions. At N/S = 18 about 33 SO4-radical anions are required per one lethal event. φbd increases linearly with the S2- concentration (up to 0.5 mM). The damage to DNA is drastically reduced on addition of mono- or divalent salts (e.g. NaC104, MgCl2). These additives cause the release of Ru(bpy)2+ from the strand. The observed damage to DNA is thus the result of a site specific reaction. When the phenanthroline analogue, Ru(phen)φ+, is used as sensitizer, φssb and φbd are three times smaller.  相似文献   

3.
Conditions for the generation of the Ru(bpy)3 3+ complex in organic solvents (Me3CN or MeNO2) in the presence of small amounts of H2SO4 were found. Chemiluminescence was observed in the reaction of Ru(bpy)3 3+ with Ph3Na in a THF-MeCN mixture. The chemiluminescence emitter was identified as Ru(bpy)3 2+*. This emitter forms in the excited state in the elementary reaction of electron transfer from the Ph3C anion to Ru(bpy)3 3+. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 292–294, February, 1999.  相似文献   

4.
A tripodal ligand L1 and dipodal ligand L2 containing imidazole rings have been synthesized by the reaction of 1,10-phenanthroline-5,6-dione with 2,2??-bipyridine-4,4??-dicarbaldehyde and 4-methyl-2,2??-bipyridine-4??-carbaldehyde, respectively, in the presence of ammonium acetate. Both ligands have two kinds of nonequivalent coordinating sites: one involving the phenanthroline moiety and the other involving the 2,2??-bipyridine moiety. The Ru(II) complexes, [(bpy)6Ru3(L1)](PF6)6 and [(bpy)4Ru2(L2)](PF6)4 (bpy?=?2,2??-bipyridine), have been obtained by refluxing Ru(bpy)2Cl2·2H2O with each ligand in solution. The two complexes display MLCT absorptions at 465 and 480?nm, respectively, and emission at 665 and 675?nm, respectively, in CH3CN solution. Electrochemical studies of both complexes show one Ru(II)-centered oxidation at around 1.29?V and three ligand-centered reductions.  相似文献   

5.
In this study, a novel electrochemiluminescence (ECL) sensor for highly sensitive and selective detection of Pb(II) was developed based on Ru(bpy)32+ encapsulated UiO66 metal‐organic‐framework (Ru(bpy)32+?UiO66 MOF) and ?NH2 group functionalized silica (NH2?SiO2). The NH2?SiO2 with large surface area provided an excellent platform for the ECL sensor. As numerous exposed carboxyl groups were present on UiO66 backbone, the Ru(bpy)32+?UiO66 could be steadily immobilized to NH2?SiO2 by forming amide bonds. Meanwhile, the introduced UiO66 MOF which used for the encapsulation of Ru(bpy)32+, significantly enhanced the ECL efficiency of the proposed sensor, as it possessed a large specific surface area and porosity for the loading of Ru(bpy)32+. Moreover, a high quenching effect on ECL intensity was obtained in the presence of Pb(II) in the electrolyte. Under the optimal conditions, the quenched ECL intensity showed a good linear relationship within Pb(II) concentration in the range from 1.0×10?6 to 1.0×102 μM, with a detection limit of 1.0×10?7 μM (S/N=3). The proposed sensor for Pb(II) detection was simple in operation, rapid in testing, stable in signal, and showed a good anti‐interference ability to some other metal ions. Besides, its application for detecting Pb(II) in a real sample was also investigated here. This work provides a potential platform for metal ions detection in environmental monitoring field.  相似文献   

6.
陈晓彤  董彬  崔孟超  王科志  金林培 《化学学报》2007,65(12):1181-1184
比较研究了以C2O42-为共反应物时5个结构相关的Ru(II)配合物[Ru(bpy)2L1]2+, [Ru(bpy)2L2]2+, [Ru(bpy)2L3]2+, [Ru(phen)2L1]2+和[Ru(phen)2L2]2+(其中bpy=2,2′-联吡啶, phen=1,10-邻菲啰啉, L1=4-羧基苯基咪唑[4,5-f][1,10]邻菲啰啉, L2=3-羧基-4-羟基苯基咪唑[4,5-f][1,10]邻菲啰啉, L3=3,4-二羟基苯基咪唑[4,5-f][1,10]邻菲啰啉)的电致化学发光(ECL)性质. 结果表明, 酚羟基的存在能有效地淬灭Ru(II)配合物[Ru(bpy)2L2]2+, [Ru(bpy)2L3]2+和[Ru(phen)2L2]2+的ECL, 其它Ru(II)配合物的ECL量子效率与[Ru(bpy)3]2+相差不大.  相似文献   

7.
Photochemical polymerization ofN,N′-methylenebisacrylamide (MBA) initiated by the dye-reducing agent rhodamine-B-allylthiourea (ATU) system is enhanced by the addition of small amounts oftris(2,2′-bipyridine)-ruthenium(II), Ru(bpy) 3 2+ , a result attributed to the efficient formation of chain-initiating allylthiourea radicals in the presence of Ru(bpy) 3 2+ ions. The rate of polymerization was found to be proportional to [Ru(bpy) 3 2+ ]0.5, [rhodamine-B]0.5, [ATU]0.5 and [MBA]1.0. A probable mechanism consistent with the observed results is proposed and discussed. TMC 2391  相似文献   

8.
Photochemical properties of Ru(bpy)2(poly-4-methyl-4′-vinyl-2,2′-bipyridine)Cl2 ( 2 ) were studied and compared with that of Ru(bpy)3Cl2. Continuous irradiation of a solution, which contains polymer 2 as a photosensitizer, methylviologen (MV2+) or 4,4′-bipyridinium-1,1′-bis(trimethylenesulfonate) (SPV) as an electron acceptor and triethanolamine (TEOA) as a sacrificial donor, resulted in the formation of viologen radical ion (MV+ or SPV?). The rate of formation of MV+ or SPV? for the polymer 2 system was smaller than that for the Ru(bpy)3 Cl2 systems. The reason for this fact was kinetically analyzed by quenching experiments of excited Ru(II) complexes by MV2+ or SPV, the photosensitized reactions of the TEOA–Ru(II) complex–MV2+ or -SPV systems, and the dye laser photolysis of the Ru(II) complex–MV2+ or -SPV systems.  相似文献   

9.
Spectral-kinetic luminescence characteristics of the complexes cis-[Ru(bpy)(dppe)X2], cis- [Ru(bpy)2(PPh3)X](BF4) and cis-[Ru(bpy)2X2] [bpy = 2,2'-bipyridyl, dppe = 1,2-bis(diphenylphosphino)ethane, PPh3 is triphenylphosphine, X = NO2 - and CN-] in the ethanol-methanol 4:1 mixtures and adsorbed on the oxide SiO2 or porous polyacrylonitrile polymer surface were studied. Luminescence and luminescence exitation spectra were registered at 77 and 293 K in 230-750 nm range and the luminescence decay time was measured. Introduction of phosphine ligands to the ruthenium(II) bipyridyl complexes inner sphere leads to rise in singlet and triplet state energy at the charge transfer from Ru(II) to 2,2'-bipyridyl in the series [Ru(bpy)2X2] < Ru(bpy)2(PPh3)X](BF4) < [Ru(bpy)(dppe)X2]. The complex adsorption on SiO2 or polyacrylonitrile surface affects noticeably the luminescence spectro-kinetic characteristics.  相似文献   

10.
The luminescence properties of [Ru(bpy)2MDHIP]2+ (bpy = 2,2′-bipyridine, MDHIP = 2,4-dihydrophenyl-imidazo[4,5-f][1,10]phenanthroline) in the absence and presence of DNA modulated by the introduction of Cu2+ ion and EDTA have been investigated. It is found that the ruthenium(II) complex can insert and stack between the base pairs of calf thymus DNA with MDHIP ligand, and the intramolecular hydrogen bond is located inside of the DNA. The presence of DNA can enhance the luminescence intensities of [Ru(bpy)2MDHIP]2+ both in buffer solution and on an ITO surface. Moreover, the luminescence intensities of [Ru(bpy)2MDHIP]2+ and DNA-bound [Ru(bpy)2MDHIP]2+ are quenched by Cu2+, and next recovered by the addition of EDTA. The repetitive luminescence-modulations have been achieved through the introduction of equimolar Cu2+ and EDTA, respectively. In addition, it becomes evident that the number of luminescence-modulation cycles for [Ru(bpy)2MDHIP]2+ in the absence and presence of DNA is influenced by the cumulative concentrations of CuEDTA, generated successively by the strong coordination of Cu2+ to EDTA.  相似文献   

11.
Six new homobimetallic and heterobimetallic complexes of rhenium(I) and ruthenium(II) bridged by ethynylene spacer [(CO)3(bpy)Re(BL)Re(bpy)(CO)3]2+ [Cl(bpy)2Ru(BL)Ru(bpy)2Cl]2+ and [(CO)3(bpy)Re(BL)Ru(bpy)2Cl]2+ (bpy = 2,2′-bipyridine, BL = 1,2-bis(4-pyridyl)acetylene (bpa) and 1,4-bis(4-pyridyl)butadiyne (bpb) are synthesized and characterized. The electrochemical and photophysical properties of all the complexes show a weak interaction between two metal centers in heterobimetallic complexes. The excited state lifetime of the complexes is increased upon introduction of ethynylene spacer and the transient spectra show that this is due to delocalization of electron in the bridging ligand. Also, intramolecular energy transfer from *Re(I) to Ru(II) in Re–Ru heterobimetallic complexes occurs with a rate constant 4 × 107 s−1.  相似文献   

12.
Lei Qian  Xiurong Yang 《Talanta》2007,73(1):189-193
In this paper, we demonstrate an electrochemiluminescence (ECL) enhancement of tris(2,2-bipyridyl)ruthenium(II) (Ru(bpy)32+) by the addition of silver(I) ions. The maximum enhancement factor of about 5 was obtained on a glassy carbon electrode in the absence of co-reactant. The enhancement of ECL intensity was possibly attributed to the unique catalytic activity of Ag+ for reactions between Ru(bpy)33+ with OH. The higher enhancement was observed in phosphate buffer solutions compared with that from borate buffer solutions. This resulted from the fact that formation of nanoparticles with large surface area in the phosphate buffer solution exhibited high catalytic activity. The amount of Ag+, solution pH and working electrode materials played important roles for the ECL enhancement. We also studied the effects of Ag+ on Ru(bpy)32+/tripropylamine and Ru(bpy)32+/C2O42− ECL systems.  相似文献   

13.
In systems that are known to generate electronically excited species, the tris(bipyridine) ruthenium(II) cation, Ru(bpy)32+, ion is found to be an efficient, chemically stable, emissive energy acceptor for probing excited state formation. The chemiexcitation system employed was the thermolysis of tetramethyldioxetane. The system employed for enzymatic generation of excited species was the horseradish peroxidase-catalyzed oxidation of appropriate substrates such as isobutyraldehyde, phenylacetal-dehyde and indoleacetic acid. The versatility of the Ru(bpy)32+ ion is exemplified by its capacity to detect excited state formation in both chemical and enzymatic systems and in homogeneous and microheterogeneous media. The long wavelength emission and chemical stability of Ru(bpy)32+ facilitate quantitative studies of the sensi-tization process. Possible routes leading to excitation of the Ru(bpy)32+ ion by the chemi- or enzyme-generated excited species include electronic energy transfer and electron transfer-induced luminescence.  相似文献   

14.
We present a carbon paste electrode (CPE) modified using the electron mediator bis(1,10‐phenanthroline‐5,6‐dione)(2,2′‐bipyridine)ruthenium(II) ([Ru(phend)2bpy]2+) exchanged into the inorganic layered material zirconium phosphate (ZrP). X‐Ray powder diffraction showed that the interlayer distance of ZrP increases upon [Ru(phend)2bpy]2+ intercalation from 10.3 Å to 14.2 Å. The UV‐vis and IR spectroscopies results showed the characteristic peaks expected for [Ru(phend)2bpy]2+. The UV‐vis spectrophotometric results indicate that the [Ru(phend)2bpy]2+ concentration inside the ZrP layers increased as a function of the loading level. The exchanged [Ru(phend)2bpy]2+ exhibited luminescence even at low concentration. Modified CPEs were constructed and analyzed using cyclic voltammetry. The intercalated mediator remained electroactive within the layers (E°′=–38.5 mV vs. Ag/AgCl, 3.5 M NaCl) and electrocatalysis of NADH oxidation was observed. The kinetics of the modified CPE shows a Michaelis–Menten behavior. This CPE was used for the oxidation of NADH in the presence of Bakers' yeast alcohol dehydrogenase. A calibration plot for ethanol is presented.  相似文献   

15.
韩洋  杨维春  王科志 《化学学报》2007,65(21):2382-2386
合成并表征了一个新的Ru(II)配合物[Ru(bpy)2(hedppc)](ClO4)2 {bpy=2,2'-联吡啶, hedppc=二联吡啶[3,2-a: 2',3'-c]吩嗪-11-羧酸(2-羟乙基)酯}. 通过紫外-可见吸收光谱、与溴化乙锭竞争实验、粘度测量和DNA裂解实验研究了配合物与小牛胸腺DNA的相互作用性质. 结果表明配合物以插入模式与DNA键合,键合常数Kb=(6.99±1.34)×106 mol-1•L (s=2.03±0.04)与母体配合物[Ru(bpy)2 (dppz)]2+相近,但光致发光和溶剂变色等光学性质与[Ru(bpy)2 (dppz)]2+有明显的差别.  相似文献   

16.
Chun Li 《Tetrahedron》2004,60(37):8037-8041
It has been confirmed that octasulfonatocalix[8]arene (Calx-S8) and tris(2,2′-bipyridine)ruthenium (II) (Ru(bpy)32+) can form a stable host-guest complex in aqueous solution. The binding constant for 1:1 [Calx-S88−·Ru(bpy)32+]6− complex formation was estimated to be (2.4±0.8)×104 dm3 mol−1 by fluorescence titration, which indicates that the [Calx-S88−·Ru(bpy)32+]6− complex is the main species in 1:1 molar ratio aqueous solution of Calx-S8 and Ru(bpy)32+. In situ UV-Vis spectroscopic measurements indicated that Ru(bpy)32+ complexes can be readily deposited onto ITO electrode through electrochemical polymerization of 3,4-ethylenedioxythiophene (EDOT) using [Calx-S88−·Ru(bpy)32+]6− host-guest complex as a dopant anion owing to the electrostatic interaction between the cationic conductive polymer and the anionic host-guest complex. The loading degree of the composite film with Ru(bpy)32+ can be determined by Lambert-Beer law modified for the two-dimensional concentration. The obtained composite film showed good photoelectric conversion properties in response to visible light irradiation. This is a novel photocurrent generation system in which the photoexcited state energy is efficiently collected by the conductive polymeric layer.  相似文献   

17.
《Electroanalysis》2004,16(17):1401-1405
The immobilization of tris(2,2′‐bipyridyl)ruthenium(II), Ru(bpy)32+, at a glassy carbon electrode was achieved by entrapping the Ru(bpy)32+ in a vapor deposited titania sol‐gel membrane. The electrogenerated chemiluminescence (ECL) of the immobilized Ru(bpy)32+ was studied. The Ru(bpy)32+ modified electrode showed a fast ECL response to both oxalate and proline. The ECL intensity was linearly related to concentrations of oxalate and proline over the ranges from 20 to 700 μmol L?1 and 20 to 600 μmol L?1, respectively. The detection limits for oxalate and proline at 3σ were 5.0 μmol L?1 and 4.0 μmol L?1, respectively. This electrode possessed good precision and stability for oxalate and proline determinations. The electrogenerated chemiluminescence mechanism of proline system was discussed. This work provided a new way for the immobilization of Ru(bpy)32+ and the application of titania sol‐gel membrane in electrogenerated chemiluminescence.  相似文献   

18.
Three Ru(II) complexes [Ru(bpy)2(1-IQTNH)](ClO4)2 (1), [Ru(bpy)2(2-QTNH)](ClO4)2 (2) and [Ru(bpy)2(3-IQTNH)](ClO4)2 (3) (bpy = 2,2′-bipyridine, 1-IQTNH = 6-(isoquinolin-1-yl)-1,3,5-triazine- 2,4-diamine, 2-QTNH = 6-(quinolin-2-yl)-1,3,5-triazine- 2,4-diamine, 3-IQTNH = 6-(isoquinolin-3-yl)-1,3,5-triazine-2,4-diamine) have been synthesized and characterized by elemental analysis, 1H NMR spectroscopy, electrospray ionization mass spectrometry and X-ray crystallography. The electrochemical and spectroscopic properties of the complexes differ from those of [Ru(bpy)3]2+ owing to the structural differences between the ligands and their complexes.  相似文献   

19.
Tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+) has been successfully immobilized onto electrode through the electrodeposition of Ru(bpy)32+/AuNPs/chitosan composite film. In the experiments, chitosan solution was first mixed with Au nanoparticles (AuNPs) and Ru(bpy)32+. Then, during chronopotentiometry experiments in this mixed solution, a porous 3D network structured film containing Ru(bpy)32+, AuNPs and chitosan has been electrodeposited onto cathode due to the deposition of chitosan when pH value is over its pKa (6.3). The applied current density is crucial to the film thickness and the amount of the entrapped Ru(bpy)32+. Additionally, these doping Ru(bpy)32+ in the composite film maintained their intrinsic electrochemical and electrochemiluminescence activities. Consequently, this Ru(bpy)32+/AuNPs/chitosan modified electrode has been used in ECL to detect tripropylamine, and the detection limit was 5 × 10−10 M.  相似文献   

20.
Molecular hydrogen, detected by gas-chromatographic and mass-spectrometric measurements, was obtained by irradiating with visible light aqueous hydrochloridic solutions of [Ru(bpy)3]2+ and trivalent titanium. The active species is the 3CT of [Ru(bpy)3]2+, which is quenched by Ti(III). The suggested mechanism is an electron transfer with Ti(II) formation. The back reaction between [Ru(bpy)3]3+ and Ti(II) is hindered by the very fast competitive reaction of Ti(II) (not stable in acid aqueous solutions) with H+, carrying to hydrogen evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号