首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The detection of DNA hybridization is of central importance to the diagnosis and treatment of genetic diseases. Due to cost limitations, small and easy-to-handle testing devices are required. Electrochemical detection is a promising alternative to evaluation of chip data with optical readout. Independent of the actual readout principle, the hybridization process still takes a lot of time, hampering daily use of these techniques, especially in hospitals or doctor's surgery. Here we describe how direct local electrical heating of a DNA-probe-modified gold electrode affects the surface hybridization process dramatically. We obtained a 140-fold increase of alternating current voltammetric signals for 20-base ferrocene-labeled target strands when elevating the electrode temperature during hybridization from 3 to 48 degrees C while leaving the bulk electrolyte at 3 degrees C. At optimum conditions, a target concentration of 500 pmol/L could be detected. Electrothermal regeneration of the immobilized DNA-probe strands allowed repetitive use of the same probe-modified electrode. The surface coverage of DNA probes, monitored by chronocoulometry of hexaammineruthenium(III), was almost constant upon heating to 70 degrees C. However, the hybridization ability of the probe self-assembled monolayer declined irreversibly when using a 70 degrees C hybridization temperature. Coupling of heated electrodes and highly sensitive electrochemical DNA hybridization detection methods should enhance detection limits of the latter significantly.  相似文献   

3.
Ionic permselectivity of DNA films has been investigated by the analysis of the electrochemical response of methylene blue (MB) as a function of pH and ionic strength on DNA-modified electrodes in aqueous p-nitrophenol (p-NP) and phosphate buffers. We have observed a linear Pourbaix diagram in p-NP buffer indicating that the reduction of MB occurs with a two-electron plus one-proton reaction. Interestingly, in phosphate buffer the Pourbaix diagram is curved and this suggests that the thermodynamics of MB incorporated in the film depend also on the ratio of mono- versus divalent anions in the bulk. This result indicates that DNA films do not behave as pure ion-exclusion films, but instead there is a differential permselectivity that depends on the identity of the anions. Based on this consideration of the ionic distribution in the films, we provide a new method for the analysis of the DNA surface coverage based on AC impedance of an anionic species, ferricyanide. The methodology is of particular value in analyzing DNA hybridization and dehybridization. This approach presents an advantage compared to standard ruthenium hexammine assays since our methodology is insensitive to film morphology, and is highly sensitive to the amount of negative charge on the surface.  相似文献   

4.
5.
In this report we describe an electrochemical DNA hybridization sensor approach, in which signal amplification is achieved using heated electrodes together with an enzyme as DNA-label. On the surface of the heatable low temperature co-fired ceramic (LTCC) gold electrode, an immobilized thiolated capture probe was hybridized with a biotinylated target using alkaline phosphatase (SA-ALP) as reporter molecule. The enzyme label converted the redox-inactive substrate 1-naphthyl phosphate (NAP) into the redox-active 1-naphthol voltammetrically determined at the modified gold LTCC electrode. During the measurement only the electrode was heated leaving the bulk solution at ambient temperature. Elevated temperature during detection led to increased enzyme activity and enhanced analytical signals for DNA hybridization detection. The limit of detection at 53 °C electrode temperature was 1.2 nmol/L.  相似文献   

6.
Journal of Solid State Electrochemistry - Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used for a voltammetric study of methylene blue (MB) at a mercury meniscus-modified...  相似文献   

7.
Dramatic rate enhancements are observed for the oxidation of phenols, including tyrosine, at indium-tin oxide electrodes modified by the addition of the electron-transfer relays [M(II)(bpy)(2)(4,4'-(HO)(2)P(O)CH(2))(2)bpy)](2+) (M = Ru, Os) with clear evidence for the importance of proton-coupled electron transfer and concerted electron-proton transfer.  相似文献   

8.
We extend our previous model taking into account a possible autoacceleration mechanism of electrochemical processes. It is supposed that protons generated in an electrochemical oxidation of ascorbate are responsible for an increase of electric conductivity of polyaniline. Accordingly, the current–time profiles have been calculated taking into account a “threshold” value for proton concentration to increase the electric conductivity of polyaniline by one or more orders of magnitude. Different kinds of corresponding profiles, including ones with a sigmoid character and possessing sharp current flashes as well, were obtained and analyzed.  相似文献   

9.
Zhao YD  Pang DW  Hu S  Wang ZL  Cheng JK  Dai HP 《Talanta》1999,49(4):751-756
The covalent immobilization of DNA onto self-assembled monolayer (SAM) modified gold electrodes (SAM/Au) was studied by X-ray photoelectron spectrometry and electrochemical method so as to optimize its covalent immobilization on SAMs. Three types of SAMs with hydroxyl, amino, and carboxyl terminal groups, respectively, were examined. Results obtained by both X-ray photoelectron spectrometry and cyclic voltammetry show that the largest covalent immobilization amount of dsDNA could be gained on hydroxyl-terminated SAM/Au. The ratio of amount of dsDNA immobilized on hydroxyl-terminated SAMs to that on carboxyl-terminated SAMs and to that on amino-terminated SAMs is (3-3.5): (1-1.5): 1. The dsDNA immobilized covalently on hydroxyl-terminated SAMs accounts for 82.8-87.6% of its total surface amount (including small amount of dsDNA adsorbed). So the hydroxyl-terminated SAM is a good substrate for the covalent immobilization of dsDNA on gold surfaces.  相似文献   

10.
Teflon-bonded porous electrodes have been prepared for the study of the upd metal effect on the electrocatalysis of formic acid oxidation. The influence of upd lead on finely divided platinum with porous carbon as substrate was tested in fuel cell anodes for the oxidation of formic acid in 1 M HClO4 electrolyte.In order to investigate the increase in activity through the use of upd lead, the co-adsorption of lead and a strongly adsorbed intermediate was followed by a flux cell technique. From this study it follows that the third-body effect is of minor importance. Obviously upd lead itself catalyses the direct oxidation to CO2.  相似文献   

11.
P. Palaska 《Talanta》2007,72(3):1199-1206
The interaction of cyclophosphamide (CP) with calf thymus double-stranded DNA (dsDNA) and thermally denatured single-stranded DNA (ssDNA) immobilized at the carbon paste (CPE) and pencil graphite electrodes (PGE), was studied electrochemically based on oxidation signals of guanine and adenine using differential pulse voltammetry (DPV).As a result of the interaction of CP with DNA, the voltammetric signals of guanine and adenine increased in the case of dsDNA while a slight increase was observed in ssDNA. The effect of experimental parameters such as the interaction time between CP and DNA forms and the concentration of CP, were studied using DPV with CPE and PGE. Additionally, reproducibility and detection limits were determined using both electrodes. A comparison of the analytical performance between CPE and PGE was done. Our results showed that these two different DNA biosensors could be used for the sensitive, rapid and cost effective detection of CP itself as well as of CP-DNA interaction.Furthermore, the interaction of CP with dsDNA and ssDNA was studied in solution and at the electrode surface by means of alternating current voltammetry (ACV) in 0.3 M NaCl and 50 mM sodium phosphate buffer (pH 8.5) supporting electrolyte, using a hanging mercury drop electrode (HMDE) as working electrode.The conclusions of this study were mainly based on tensammetric peaks I (at −1.183 V) and II (−1.419 V) of DNA. This study involved the interaction of CP with surface-confined and solution phase DNA where experimental parameters, such as the concentration of CP and the interaction time, were studied. By increasing the concentration of CP, an increase of peak II was observed in both ds and ssDNA, while an increase of peak I was observed only in the case of dsDNA. An overall conclusion of the study using HMDE was that the interaction of CP with surface-confined DNA significantly differed from that with solution phase DNA. The increase of peaks I and II was lower in the case of interaction of CP with surface-confined DNA, probably due to steric positioning of DNA at the electrode surface.  相似文献   

12.
The voltammetric behavior of nifuroxime was investigated comparing stationary voltammetric methods with the recently proposed sequential-injection stripping analysis (SISA), by using cyclic voltammetry (CV) and differential-pulse voltammetry at bare and DNA-modified glassy carbon (GC) electrodes. In cyclic voltammetry, reduction of nifuroxime at DNA-modified electrodes gives rise to a well-defined peak, and in contrast to bare GC surfaces, a re-oxidation peak could be observed. Optimization of the pre-concentration process at the DNA-modified surface led to a significant enhancement of the voltammetric current response, a better defined peak shape and an improved dynamic range. Based on this optimized voltammetric procedure, SISA has been evaluated for the determination of nifuroxime. The flow-system significantly facilitates the regeneration of the DNA-modified electrode surface, hence diminishing problems related to accumulation and memory effects. The linear detection range could be extended to 65 microM with a detection limit (3 s) of 0.68 microM, which corresponds to an absolute amount of 21 ng nifuroxime.  相似文献   

13.
Nondoped and nitrogen-doped (N-doped) carbon nanofiber (CNF) electrodes were prepared via a floating catalyst chemical vapor deposition (CVD) method using precursors consisting of ferrocene and either xylene or pyridine to control the nitrogen content. Structural and compositional differences between the nondoped and N-doped varieties were assessed using TEM, BET, Raman, TGA, and XPS. Electrochemical methods were used to study the influence of nitrogen doping on the oxygen reduction reaction (ORR). The N-doped CNF electrodes demonstrate significant catalytic activity toward oxygen reduction in aqueous KNO(3) solutions at neutral to basic pH. Electrochemical data are presented which indicate that the ORR proceeds by the peroxide pathway via two successive two-electron reductions. However, for N-doped CNF electrodes, the reduction process can be treated as a catalytic regenerative process where the intermediate hydroperoxide (HO(2)(-)) is chemically decomposed to regenerate oxygen, 2HO(2)(-) <==> O(2) + 2OH(-). The proposed electrocatalysis mechanisms for ORR at both nondoped and N-doped varieties are supported by electrochemical simulations and by measured difference in hydroperoxide decomposition rate constants. Remarkably, approximately 100 fold enhancement for hydroperoxide decomposition is observed for N-doped CNFs, with rates comparable to the best known peroxide decomposition catalysts. Collectively the data indicate that exposed edge plane defects and nitrogen doping are important factors for influencing adsorption of reactive intermediates (i.e., superoxide, hydroperoxide) and for enhancing electrocatalysis for the ORR at nanostructured carbon electrodes.  相似文献   

14.
A model of electrocatalytic processes taking place at electrodes modified with a layer of a conducting polymer presented earlier has been expanded to a wider variety of parameters related to electric conductivity of a modifier layer. Relatively low values of charge carrier diffusion coefficients within the modifier film have been used in calculations, thus modeling a semiconducting behaviour of conducting polymer film, typical for a wide range of these materials. As a result, nonlinear hyperbolic dependencies of current on concentration have been obtained and discussed for definite combinations of a linear term of chemical kinetics related to a simple second-order chemical redox reaction, and two diffusion processes, related to reactant and charge carriers. Concerning biosensor application of electrocatalysis, the performed analysis showed that nonlinear current-concentration profiles can be observed even in the absence of a hyperbolic Michaelis-Menten type kinetics.  相似文献   

15.
Liu DY  Xin YY  He XW  Yin XB 《The Analyst》2011,136(3):479-485
Electrochemiluminescence (ECL)-based biosensors are often used in the field of DNA- and protein-assay. Although ruthenium complex-based ECL is sensitive, its high exciting potential may lead to oxidation damage to biomolecules. For the first time, a non-damaging, low potential ECL aptasensor was constructed for bioassay with lysozyme as a model. After a single-stranded anti-lysozyme aptamer was attached to a gold electrode, a double stranded (ds)-DNA formed with its complementary strand. Ru(phen)(3)(2+), as an ECL probe, was intercalated into the ds-DNA. The hybridization of lysozyme with its aptamer led to the dissociation of ds-DNA because of the high stability of the aptamer-lysozyme and therefore the Ru(phen)(3)(2+) intercalated into ds-DNA was released. A low potential ECL was observed at the ds-DNA-modified electrode because ds-DNA was able to preconcentrate tripropylamine (TPA) and acted as the acceptor of the protons released from protonated TPAH(+). While the DNA sequence (anti-lysozyme aptamer) was used as the special recognition element for lysozyme, the formed ds-DNA also provided a micro-environment for low potential ECL. The low potential ECL aptasensor achieved the determination of lysozyme with a detection limit of 0.45 pM. The day-to-day precision (RSDs, n = 5) for the determination of lysozyme was lower than 5%, showing the reliability of the aptasensor. The regeneration of the aptasensor confirmed that the low potential for ECL could decrease oxidation damage to biomolecules. Further, the proposed method was successfully used to analyze diluted egg white sample directly. The protocol exhibited a promising platform for sensitive bioassay and could be further applied for the development of other low potential ECL sensing systems.  相似文献   

16.
Electrocatalysis presents an environmentally benign route to carry out energy conversion reactions and organic transformations. The use of nanomaterials and single atoms as catalysts in electrochemical reactions has led to improvements in activity and selectivity over bulk electrocatalysts, however, optimal design of electrocatalytic reactions requires an in-depth understanding of the dynamic solid–liquid interface, reaction intermediates, and catalyst structural changes. Tracking bond breaking and formation events in real time is an important complement to catalyst characterization. This short review highlights advancements in fundamental understanding of electrocatalysis at nanoscale and single atom electrocatalysts obtained using operando vibrational spectroscopies. To push the boundaries of our fundamental understanding in electrocatalysis, we also emphasize a need to further develop operando vibrational techniques to reduce ensemble averaging with improvements in spatial and temporal resolution.  相似文献   

17.
DNA-damaging agents in the environment represent a serious danger to human health. We use a supercoiled DNA-modified mercury electrode as a fast-response biosensor for the detection of DNA strand cleaving agents. The sensor is based on a strong difference between the a.c. voltammetric responses of covalently closed circular (supercoiled) and of open circular (nicked) plasmid DNA. We show that the sensor can detect hydroxyl radicals in laboratory-prepared solutions and in various natural and industrial water samples. The sensor is also capable of detecting unknown DNA-damaging agents in industrial waters.  相似文献   

18.
19.
Structure and electrocatalysis of sputtered RuPt thin-film electrodes   总被引:1,自引:0,他引:1  
The structural and electrochemical properties of RuPt thin-film electrodes fabricated by radio frequency (rf) magnetron sputtering have been investigated. Grazing incidence X-ray diffraction data show a transition from a face-centered cubic (fcc) to hexagonal cubic-packed (hcp) structure as the Ru percentage increases. The transition occurs gradually between 32 and 58% Ru, which is significantly different from the bulk RuPt phase diagram. The catalytic activity of the thin-film electrodes for methanol oxidation shows a broad peak near 40-60% Ru, consistent with previous reports. The relationship between catalytic activity and film structure is discussed and contrasted with previous investigations.  相似文献   

20.
庞代文  陆琪  赵元弟  张敏 《化学学报》2000,58(5):524-528
发现在过量1,10-菲咯啉存在时,Co^3^+^/^2^+在单链DNA(ssDNA)修饰金电极上的电化学响应显著增强。采用紫外光谱和循环伏安法考察了Co^3^+^/^2^+/1,10-菲咯啉体系与sSDNA的相互作用,并利用Co^3^+^/^2^+在1,10-菲咯啉存在时在ssDNA修饰金电极上的高灵敏电化学响应对痕量钴离子进行了测定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号