首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactions of atomic lanthanide cations (excluding Pm+) with D2O have been surveyed in the gas phase using an inductively coupled plasma/selected-ion flow tube (ICP/SIFT) tandem mass spectrometer to measure rate coefficients and product distributions in He at 0.35+/-0.01 Torr and 295+/-2 K. Primary reaction channels were observed corresponding to O-atom transfer, OD transfer and D2O addition. O-atom transfer is the predominant reaction channel and occurs exclusively with Ce+, Nd+, Sm+, Gd+, Tb+ and Lu+. OD transfer is observed exclusively with Yb+, and competes with O-atom transfer in the reactions with La+ and Pr+. Slow D2O addition is observed with early lanthanide cation Eu+ and the late lanthanide cations Dy+, Ho+, Er+ and Tm+. Higher-order sequential D2O addition of up to five D2O molecules is observed with LnO+ and LnOD+. A delay of more than 50 kcal mol(-1) is observed in the onset of efficient exothermic O-atom transfer, which suggests the presence of kinetic barriers of perhaps this magnitude in the exothermic O-atom transfer reactions of Dy+, Ho+, Er) and Tm+ with D2O. The reaction efficiency for O-atom transfer is seen to decrease as the energy required to promote an electron to make two non-f electrons available for bonding increases. The periodic trend in reaction efficiency along the lanthanide series matches the periodic trend in the electron-promotion energy required to achieve a d1s1 or d2 excited electronic configuration in the lanthanide cation, and also the periodic trends across the lanthanide row reported previously for several alcohols and phenol. An Arrhenius-like correlation is also observed for the dependence of D2O reactivity on promotion energy for early lanthanide cations, and exhibits a characteristic temperature of 2600 K.  相似文献   

2.
The reactions of 46 atomic-metal cations with CS2 have been investigated at room temperature using an inductively-coupled plasma/selected-ion flow tube (ICP/SIFT) tandem mass spectrometer. Rate coefficients and products were measured for the reactions of fourth-period atomic ions from K+ to Se+, of fifth-period atomic ions from Rb+ to Te+ (excluding Tc+), and of sixth-period atomic ions from Cs+ to Bi+. Primary reaction channels were observed leading to S-atom transfer, CS2 addition and, with Hg+, electron transfer. S-atom transfer appears to be thermodynamically controlled and occurs exclusively, and with unit efficiency, in the reactions with most early transition-metal cations (Sc+, Ti+, Y+, Zr+, Nb+, La+, Hf+, Ta+, and W+) and with several main-group cations (As+, Sb+) and less efficiently with Se+, Re+ and Os+. Other ions, including most late transition and main-group metal cations, react with CS2 with measurable rates mostly through CS2 addition or not at all (K+, Rb+, Cs+). Traces of excited states (< 10%) were seen from an inspection of the observed product ions to be involved in the reactions with Mo+, Te+, Ba+ and Au+ and possibly Pt+ and Ir+. The primary products YS+, ZrS+, NbS+, HfS+, TaS+, WS+, ReS+ and OsS+ react further by S-atom transfer to form MS2(+), and TaS2(+) reacts further to form TaS3(+). CS2 addition occurs with the cations MCS2(+), MS+, MS2(+), CS2(+), and TaS3(+) to form M+(CS2)(n) (n < or = 4), MS+(CS2)(n) (n < or = 4), MS2(+)(CS2)(n) (n < or = 3), (CS2)2(+) and TaS3(+)(CS2). Up to four CS2 molecules add sequentially to bare metal cations and monosulfide cations, and three to disulfide cations. Equilibrium constant measurements are reported that provide some insight into the standard free energy change for CS2 ligation. Periodic variations in deltaG degrees are as expected from the variation in electrostatic attraction, which follows the trend in atomic-ion size and the trend in repulsion between the orbitals of the atomic cations and the occupied orbitals of CS2.  相似文献   

3.
Atomic cations (26), M+, have been shown to lie within a thermodynamic window for O-atom transport catalysis of the reduction of N2O by CO and have been checked for catalytic activity at room temperature with kinetic measurements using an inductively-coupled plasma/selected-ion flow tube (ICP/SIFT) tandem mass spectrometer. Only 10 of these 26 atomic cations were seen to be catalytic: Ca+, Fe+, Ge+, Sr+, Ba+, Os+, Ir+, Pt+, Eu+, and Yb+. The remaining 16 cations that lie in the thermodynamic window (Cr+, Mn+, Co+, Ni+, Cu+, Se+, Mo+, Ru+, Rh+, Sn+, Te+, Re+, Pb+, Bi+, Tm+, and Lu+) react too slowly at room temperature either in the formation of MO+ or in its reduction by CO. Many of these reactions are known to be spin forbidden and a few actually may lie outside the thermodynamic window. A new measure of efficiency is introduced for catalytic cycles that allows the discrimination between catalytic cations on the basis of the efficiencies of the two legs of the catalytic cycle. Also, a potential-energy landscape is computed for the reduction of N2O by CO catalyzed by Fe+(6D) that vividly illustrates the operation of an ionic catalyst.  相似文献   

4.
Room-temperature rate coefficients and product distributions are reported for the reactions of ozone with the cations and dications of the alkaline-earth metals Ca, Sr, and Ba. The measurements were performed with a selected-ion flow tube (SIFT) tandem mass spectrometer in conjunction with either an electrospray (ESI) or an inductively coupled plasma (ICP) ionization source. All the singly charged species react with ozone by O-atom transfer and form monoxide cations rapidly, k = 4.8, 6.7, and 8.7 x 10(-10) cm3 molecule(-1) s(-1) for the reactions of Ca+, Sr+, and Ba+, respectively. Further sequential O-atom transfer occurs to form dioxide and trioxide cations. The efficiencies for all O-atom transfer reactions are greater than 10%. The data also signify the catalytic conversion of ozone to oxygen with the alkaline-earth metal and metal oxide cations serving as catalysts. Ca2+ reacts rapidly with O3 by charge separation to form CaO+ and O2+ with a rate coefficient of k = 1.5 x 10(-9) cm3 molecule(-1) s(-1). In contrast, the reactions of Sr2+ and Ba2+ are found to be slow and add O3, (k >/= 1.1 x 10-11 cm3 molecule-1 s-1). The initial additions are followed by the rapid sequential addition of up to five O3 molecules with values of k between 1 and 5 x 10(-10) cm3 molecule(-1) s(-1). Metal/ozone cluster ions as large as Sr2+(O3)5 and Ba2+(O3)4 were observed for the first time.  相似文献   

5.
The room-temperature reactions of nitric oxide with 46 atomic cations have been surveyed systematically across and down the periodic table using an inductively-coupled plasma/selected-ion flow tube (ICP/SIFT) tandem mass spectrometer. Rate coefficients and product distributions were measured for the reactions of first-row cations from K+ to Se+, of second-row cations from Rb+ to Te+ (excluding Tc+), and of third-row cations from Cs+ to Bi+. Reactions both first and second order in NO were identified. The observed bimolecular reactions were thermodynamically controlled. Efficient exothermic electron transfer was observed with Zn+, As+, Se+, Au+, and Hg+. Bimolecular O-atom transfer was observed with Sc+, Ti+, Y+, Zr+, Nb+, La+, Hf+, Ta+, and W+. Of the remaining 32 atomic ions, all but 8 react in novel termolecular reactions second order in NO to produce NO+ and the metal-nitrosyl molecule, the metal-monoxide cation and nitrous oxide, and/or the metal-nitrosyl cation. K+, Rb+, Cs+, Ga+, In+, Tl+, Pb+, and Bi+ are totally unreactive. Further reactions with NO produce the dioxide cations CaO2+, TiO2+, VO2+, CrO2+, SrO2+, ZrO2+, NbO2+, RuO2+, BaO2+, HfO2+, TaO2+, WO2+, ReO2+, and OsO2+ and the still higher order oxides WO3+, ReO3+, and ReO4+. NO ligation was observed in the formation of CaO+(NO), ScO+(NO), TiO+(NO), VO+(NO)(1-3), VO2+(NO)(1-3), SrO+(NO), SrO2+(NO)1,2, RuO+(NO)(1-3), RuO2+(NO)1,2, OsO+(NO)(1-3), and IrO+(NO). The reported reactivities for bare atomic ions provide a benchmark for reactivities of ligated atomic ions and point to possible second-order NO chemistry in biometallic and metal-surface environments leading to the conversion of NO to N2O and the production of metal-nitrosyl molecules.  相似文献   

6.
Gas-phase reactions of atomic lanthanide cations (excluding Pm+) have been surveyed systematically with CO2 and CS2 using an inductively coupled plasma/selected-ion flow tube (ICP/SIFT) tandem mass spectrometer. Observations are reported for reactions with La+, Ce+, Pr+, Nd+, Sm+, Eu+, Gd+, Tb+, Dy+, Ho+, Er+, Tm+, Yb+, and Lu+ at room temperature (295 +/- 2 K) in helium at a total pressure of 0.35 +/- 0.02 Torr. The observed primary reaction channels correspond to X-atom transfer (X = O, S) and CX2 addition. X-atom transfer is the predominant reaction channel with La+, Ce+, Pr+, Nd+, Gd+, Tb+, and Lu+, and CX2 addition occurs with the other lanthanide cations. Competition between these two channels is seen only in the reactions of CS2 with Nd+ and Lu+. Rate coefficient measurements indicate a periodicity in the reaction efficiencies of the early and late lanthanides. With CO2 the observed trends in reactivity across the row and with exothermicity follow trends in the energy required to achieve two unpaired non-f valence electrons by electron promotion within the Ln+ cation that suggest the presence of a kinetic barrier, in a manner much like those observed previously for reactions with isoelectronic N2O. In contrast, no such barrier is evident for S-atom transfer from the valence isolectronic CS2 molecule which proceeds at unit efficiency, and this is attributed to the much higher polarizability of CS2 compared to CO2 and N2O. Up to five CX2 molecules were observed to add sequentially to selected Ln+ and LnX+ cations.  相似文献   

7.
The chemistry of carbon dioxide has been surveyed systematically with 46 atomic cations at room temperature using an inductively-coupled plasma/selected-ion flow tube (ICP/SIFT) tandem mass spectrometer. The atomic cations were produced at ca. 5500 K in an ICP source and allowed to cool radiatively and to thermalize by collisions with Ar and He atoms prior to reaction downstream in a flow tube in helium buffer gas at 0.35 +/- 0.01 Torr and 295 +/- 2 K. Rate coefficients and products were measured for the reactions of first-row atomic ions from K(+) to Se(+), of second-row atomic ions from Rb(+) to Te(+) (excluding Tc(+)), and of third-row atomic ions from Cs(+) to Bi(+). CO(2) was found to react in a bimolecular fashion by O atom transfer only with 9 early transition-metal cations: the group 3 cations Sc(+), Y(+), and La(+), the group 4 cations Ti(+), Zr(+), and Hf(+), the group 5 cations Nb(+) and Ta(+), and the group 6 cation W(+). Electron spin conservation was observed to control the kinetics of O atom transfer. Addition of CO(2) was observed for the remaining 37 cations. While the rate of addition was not measurable some insight was obtained into the standard free energy change, DeltaG(o), for CO(2) ligation from equilibrium constant measurements. A periodic variation in DeltaG(o) was observed for first row cations that is consistent with previous calculations of bond energies D(0)(M(+)-CO(2)). The observed trends in D(0) and DeltaG(o) are expected from the variation in electrostatic attraction between M(+) and CO(2) which follows the trend in atomic-ion size and the trend in repulsion between the orbitals of the atomic cations and the occupied orbitals of CO(2). Higher-order CO(2) cluster ions with up to four CO(2) ligands also were observed for 24 of the atomic cations while MO(2)(+) dioxide formation by sequential O atom transfer was seen only with Hf(+), Nb(+), Ta(+), and W(+).  相似文献   

8.
Twenty-five atomic cations, M (+), that lie within the thermodynamic window for O-atom transport catalysis of the oxidation of hydrogen by nitrous oxide, have been checked for catalytic activity at room temperature with kinetic measurements using an inductively-coupled plasma/selected-ion flow tube (ICP/SIFT) tandem mass spectrometer. Only 4 of these 25 atomic cations were seen to be catalytic: Fe (+), Os (+), Ir (+), and Pt (+). Two of these, Ir (+) and Pt (+), are efficient catalysts, while Fe (+) and Os (+) are not. Eighteen atomic cations (Cr (+), Mn (+), Co (+), Ni (+), Cu (+), Ge (+), Se (+), Mo (+), Ru (+), Rh (+), Sn (+), Te (+), Re (+), Pb (+), Bi (+), Eu (+), Tm (+), and Yb (+)) react too slowly at room temperature either in their oxidation with N 2O to form MO (+) or in the reduction of MO (+) by H 2. Many of these reactions are known to be spin forbidden and a few actually may lie outside the thermodynamic window. Three alkaline-earth metal monoxide cations, CaO (+), SrO (+), and BaO (+), were observed to favor MOH (+) formation in their reactions with H 2. A potential-energy landscape is computed for the oxidation of H 2 with N 2O catalyzed by Fe (+)( (6)D) that vividly illustrates the operation of an ionic catalyst and qualitatively accounts for the relative inefficiency of this catalyst.  相似文献   

9.
Stepwise complex formation is observed between 2,3,5,6-tetrakis(2-pyridyl)pyrazine (TPPZ) and a series of metal ions (M(n+) = Sc3+, Y3+, Ho3+, Eu3+, Lu3+, Nd3+, Zn2+, Mg2+, Ca2+, Ba2+, Sr2+, Li+), where TPPZ forms a 2:1 complex [(TPPZ)2-M(n+)] and a 1:1 complex [TPPZ-M(n+)] with Mn+ at low and high concentrations of metal ions, respectively. The fluorescence intensity of TPPZ begins to increase at high concentrations of metal ions, when the 2:1 (TPPZ)2-M(n+) complex is converted to the fluorescent 1:1 TPPZ-M(n+) complex. This is regarded as an "OFF-OFF-ON" fluorescence sensor for metal ions depending on the stepwise complex formation between TPPZ and metal ions. The fluorescence quantum yields of the TPPZ-M(n+) complex vary depending on the metal valence state, in which the fluorescence quantum yields of the divalent metal complexes (TPPZ-M2+) are much larger than those of the trivalent metal complexes (TPPZ-M3+). On the other hand, the binding constants of (TPPZ)2-M(n+) (K1) and TPPZ-M(n+) (K2) vary depending on the Lewis acidity of metal ions (i.e., both K1 and K2 values increase with increasing Lewis acidity of metal ions). Sc3+, which acts as the strongest Lewis acid, forms the (TPPZ)2-Sc3+ and TPPZ-Sc3+ complexes stoichiometrically with TPPZ. In such a case, "OFF-OFF-ON" switching of electron transfer from cobalt(II) tetraphenylporphyrin (CoTPP) to O2 is observed in the presence of Sc3+ and TPPZ depending on the ratio of Sc3+ to TPPZ. Electron transfer from CoTPP to O2 occurs at Sc3+ concentrations above the 1:2 ratio ([Sc3+]/[TPPZ]0 > 0.5), when the (TPPZ)2-Sc3+ complex is converted to the TPPZ-Sc3+ complex and TPPZ-(Sc3+)2, which act as promoters of electron transfer (ON) by the strong binding of O2*- with Sc3+. In sharp contrast, no electron transfer occurs without metal ion (OFF) or in the presence at Sc3+ concentrations below the 1:2 ratio (OFF), when the (TPPZ)2-Sc3+ complex has no binding site available for O2*-.  相似文献   

10.
The branching ratios and rate coefficients have been measured at 298 K for the reactions between CHCl2F, CHClF2, and CH2ClF and the following cations (with recombination energies in the range 6.3-21.6 eV); H3O+, SFx+ (x = 1-5), CFy+ (y = 1-3), NO+, NO2+, O2+, Xe+, N2O+, O+, CO2+, Kr+, CO+, N+, N2+, Ar+, F+, and Ne+. The majority of the reactions proceed at the calculated collisional rate, but the reagent ions SF3+, NO+, NO2+, and SF2+ do not react. Surprisingly, although all of the observed product channels are calculated to be endothermic, H3O+ does react with CHCl2F. On thermochemical grounds, Xe+ appears to react with these molecules only when it is in its higher-energy 2P1/2 spin-orbit state. In general, most of the reactions form products by dissociative charge transfer, but some of the reactions of CH2ClF with the lower-energy cations produce the parent cation in significant abundance. The branching ratios produced in this study and by threshold photoelectron-photoion coincidence spectroscopy agree reasonably well over the energy range 11-22 eV. In about one-fifth of the large number of reactions studied, the branching ratios are in excellent agreement and appreciable energy resonance between an excited state and the ground state of the ionized neutral exists, suggesting that these reactions proceed exclusively by a long-range charge-transfer mechanism. Upper limits for the enthalpy of formation at 298 K of SF4Cl (-637 kJ mol-1), SClF (-28 kJ mol-1), and SHF (-7 kJ mol-1) are determined.  相似文献   

11.
The reaction of Os~+(~6D,~4F) with N_2O has been investigated at B3LYP/TZVP and CCSD(T)/6-311+G~* levels of theory.The mechanisms corresponding to O-atom and N-atom transfer reactions have been revealed.It was found that on the sextet reaction surface both the O-atom and N-atom transfer reactions undergo through direct-abstraction mechanism,leading to the formation of OsO~+ and OsN~+,whereas on quartet surface the two reactions undergo through O-N bond or N-N bond insertion mechanism.The calculated energ...  相似文献   

12.
Binuclear manganese oxide cations, Mn2O2+ (1) and Mn2O+ (2), have been prepared in the gas phase by a chemical route by using the reaction of O2 with the ions formed from the ionization of [Mn2(CO)10]. Their reactivity towards selected neutrals has been probed by Fourier Transform Ion Cyclotron Resonance spectrometry (FT-ICR), and insights into the structure of the reagent ions and of ionic reaction intermediates have been obtained by collision-induced dissociation and by the outcome of ion-molecule reactions. Whereas dihydrogen proved to be unreactive, the hydrides H2O, H2S, and NH3 react by exchange, addition, and oxidation pathways. Oxidative features are displayed also in the reactions of 1 and 2 with model organic molecules, such as methanol, acetaldehyde, and unsaturated hydrocarbons, which undergo dehydrogenation, O-atom transfer, and homolytic cleavage processes. Potentially catalytic cycles are indicated, based on the regeneration of 1 by ligand exchange of end product ions with O2.  相似文献   

13.
Interactions between metal ions and amino acids are common both in solution and in the gas phase. Here, the effect of metal ions and water on the structure of glycine is examined. The effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) and water on structures of Gly.Mn+(H2O)m and GlyZwitt.Mn+(H2O)m (m = 0, 2, 5) complexes have been determined theoretically by employing the hybrid B3LYP exchange-correlation functional and using extended basis sets. Selected calculations were carried out also by means of CBS-QB3 model chemistry. The interaction enthalpies, entropies, and Gibbs energies of eight complexes Gly.Mn+ (Mn+ = Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) were determined at the B3LYP density functional level of theory. The computed Gibbs energies DeltaG degrees are negative and span a rather broad energy interval (from -90 to -1100 kJ mol(-1)), meaning that the ions studied form strong complexes. The largest interaction Gibbs energy (-1076 kJ mol(-1)) was computed for the NiGly2+ complex. Calculations of the molecular structure and relative stability of the Gly.Mn+(H2O)m and GlyZwitt.Mn+(H2O)m (Mn+ = Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+; m = 0, 2, and 5) systems indicate that in the complexes with monovalent metal cations the most stable species are the NO coordinated metal cations in non-zwitterionic glycine. Divalent cations Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+ prefer coordination via the OO bifurcated bonds of the zwitterionic glycine. Stepwise addition of two and five water molecules leads to considerable changes in the relative stability of the hydrated species. Addition of two water molecules at the metal ion in both Gly.Mn+ and GlyZwitt.Mn+ complexes reduces the relative stability of metallic complexes of glycine. For Mn+ = Li+ or Na+, the addition of five water molecules does not change the relative order of stability. In the Gly.K+ complex, the solvation shell of water molecules around K+ ion has, because of the larger size of the potassium cation, a different structure with a reduced number of hydrogen-bonded contacts. This results in a net preference (by 10.3 kJ mol(-1)) of the GlyZwitt.K+H2O5 system. Addition of five water molecules to the glycine complexes containing divalent cations Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+ results in a net preference for non-zwitterionic glycine species. The computed relative Gibbs energies are quite high (-10 to -38 kJ mol(-1)), and the NO coordination is preferred in the Gly.Mn+(H2O)5 (Mn+ = Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) complexes over the OO coordination.  相似文献   

14.
Thermodynamic standard Gibbs energies of transfer of alkali metal cations related to Cs+ cation [DeltatG degrees*,(Cs+)-[DeltatG degrees*,(M+)] between several mutually saturated solvents of the type water-solvent were calculated from determined extraction exchange constants Kexch degrees,*(Cs+/M+). The used liquid-liquid extraction method with radioactive tracing by 137Cs permits attaining higher precision of the values as compared to the methods used up to now. The data for o-nitrophenyloctyl ether, 1,2-dichloroethane, and 1-octanol were compared with literature sources and recommended absolute values of DeltatG degrees,*M+) are reported. For dissociating solvents, the dependences of [DeltatG degrees,*(Cs+) - [DeltatG degrees,*(M+)] on Gibbs energy of hydration of an ion, DeltaGhydr degrees are straight lines either for four cations Cs+, Rb+, K+, and Na+ (nitrosolvents) or for three cations Cs+, Rb+, and K+ (1,2-dichloroethane and 1-octanol). The hydration of Na+ and still more of Li+ in the water-saturated organic phase is apparent from the results. This manifests for high-water-content equilibrium 1-octanol even in a reversal of the values [i.e., DeltatG degrees*,(Li+) being more negative than DeltatG degrees,*(Na+)], although for Cs+, Rb+, and K+, the general trend is conserved. Water-saturated 1-octanol is thus slightly less basic than water, but the overall selectivity is very low. For one studied nondissociating solvent, dioctyl sebacate, the trend of the dependences of log Kexch degrees,*(CsB/M+) on DeltaGhydr degrees is similar to that of Kexch degrees,*(Cs+/M+) for polar solvents, but different for different anions B, thus reflecting ion association in the organic phase.  相似文献   

15.
Cheng P  Bohme DK 《Inorganic chemistry》2006,45(19):7856-7863
Room-temperature reactions of sulfur hexafluoride (SF6) have been surveyed systematically with atomic lanthanide cations (Ln+, excluding Pm+) in the gas phase, using an inductively coupled plasma/selected-ion flow tube (ICP/SIFT) tandem mass spectrometer. Rate coefficients and product distributions were measured in helium at a pressure of 0.35 Torr and temperature of 295 K. All the Ln+ cations were observed to react efficiently (k/kc > 0.24) and predominantly by single and multiple F atom and fluoride abstraction to produce both LnFn+ and SFn+(where n = 1, 2, 3). The observed periodic trend in reaction efficiency along the lanthanide row matches the periodic trend in the electron-promotion energy of the Ln+ cation. A remarkable Arrhenius-like correlation is observed for the dependence of reactivity on promotion energy: the early and late lanthanide cations exhibit effective temperatures of 45 500 and 14 000 K, respectively. SFn+ product ions are observed to be unreactive with SF6, whereas up to two molecules of SF6 have been observed to add to LnFn+ product ions under the experimental operating conditions of the ICP/SIFT tandem mass spectrometer.  相似文献   

16.
Parent 1-silaadamant-1-yl (1+) and a series of mono-beta-silyl-substituted- (2-Me+, 2-F+, 2-Cl+, 2-Br+), bis-beta-silyl-substituted- (3-Me+), and tris-beta-silyl-substituted (4-Me+)-1-silaadamant-1-yl cations were studied by the DFT method at the B3LYP/6-31G(d,p) level and by GIAO NMR at the B3LYP/ 6-31G(d,p)//B3LYP/6-31G(d,p) level. The geometries, relative energies, NMR chemical shifts, and charge distribution in the bridgehead silylium ions are discussed and compared. The magnitude of the beta-silyl effect (the Si-C-Si+ hyperconjugation) is gauged as a function of structure. Related model studies on the silabicyclo[2.2.2]octyl (5+, 6+, 5a+, and 6a+), silanorbornyl (7+ and 8+), and silacyclohexyl cations (9+ and 10+) were carried out in which the effect of beta-silyl substitution on geometry, stability, and NMR chemical shifts was probed. The acyclic model Me3Si-CH2-Si+(Me)2 (11+) was used to gauge the influence of the twist angle between the p-orbital at Si+ and the C-Si bond on relative stability and on the changes in the 29Si NMR chemical shifts. Finally, interaction of 1+ with H2O and MeOH and 2-Me+ with H2O was also examined. The resulting optimized structures (12+, 13+, and 14+) and the computed NMR chemical shifts are most compatible with the formation of silaoxonium ions.  相似文献   

17.
Inner-shell excitation spectra and fragmentation of small clusters of formic acid have been studied in the oxygen K-edge region by time-of-flight fragment mass spectroscopy. In addition to several fragment cations smaller than the parent molecule, we have identified the production of HCOOH.H+ and H3O+ cations characteristic of proton transfer reactions within the clusters. Cluster-specific excitation spectra have been generated by monitoring the partial ion yields of the product cations. Resonance transitions of O1s(C[double bond]O/OH) electrons into pi(CO)* orbital in the preedge region were found to shift in energy upon clusterization. A blueshift of the O1s(C[double bond]O)-->pi(CO)* transition by approximately 0.2 eV and a redshift of the O1s(OH)-->pi(CO)* by approximately 0.6 eV were observed, indicative of strong hydrogen-bond formation within the clusters. The results have been compared with a recent theoretical calculation, which supports the conclusion that the formic-acid clusters consist of the most stable cyclic dimer andor trimer units. Specifically labeled formic acid-d, HCOOD, was also used to examine the core-excited fragmentation mechanisms. These deuterium-labeled experiments showed that HDO+ was formed via site-specific migration of a formyl hydrogen within an individual molecule, and that HD2O+ was produced via the subsequent transfer of a deuterium atom from the hydroxyl group of a nearest-neighbor molecule within a cationic cluster. Deuteron (proton) transfer from the hydroxyl site of a hydrogen-bond partner was also found to take place, producing deuteronated HCOOD.D+ (protonated HCOOH.H+) cations within the clusters.  相似文献   

18.
A guided ion beam tandem mass spectrometer is used to study the kinetic-energy dependence of doubly charged atomic tantalum cations (Ta(2+)) reacting with CH4 and CD4. As for the analogous singly charged system, the dehydrogenation reaction to form TaCH2(2+) + H2 is exothermic. The charge-transfer reaction to form Ta(+) + CH4(+) and the charge-separation reaction to form TaH(+) + CH3(+) are also observed at low energies in exothermic processes, as is a secondary reaction of TaCH2(2+) to form TaCH3(+) + CH3(+). At higher energies, other doubly charged products, TaC(2+) and TaCH3(2+), are observed, although no formation of TaH(2+) was observed. Modeling of the endothermic cross sections provides 0 K bond dissociation energies (in electronvolts) of D0(Ta(2+)-C) = 5.42 +/- 0.19 and D0(Ta(2+)-CH3) = 3.40 +/- 0.16. These experimental bond energies are in poor agreement with density functional calculations at the B3LYP/HW+/6-311++G(3df,3p) level of theory. However, the Ta(2+)-C bond energy is in good agreement with calculations at the QCISD(T) level of theory, and the Ta(2+)-CH3 bond energy is in good agreement with density functional calculations at the BHLYP level of theory. Theoretical calculations reveal the geometric and electronic structures of all product ions and are used to map the potential energy surface, which describes the mechanism of the reaction and key intermediates. Both experimental and theoretical results suggest that TaH(+), TaCH2(2+), and TaCH3(2+) are formed through a H-Ta(2+)-CH3 intermediate.  相似文献   

19.
The transfer of Pb2+ facilitated by interfacial complexation with 5-(4-phenoxyphenyl)-6H-1,3,4-thiadiazin-2-amine(PPTA) at the polarized water/1,2-dicholoroethane(1,2-DCE) interface was investigated by cyclic voltammetry.We synthesized the thiadiazine derivative,PPTA,firstly.The transfer was performed at different metal concentrations and scan rates,and the obtained voltammetric transfer peaks toward Pb2+ ion over other divalent cations(Zn2+,Co2+,Ni2+,Cd2+,Hg2+,and Cu2+) were reversible.The dependence of the half-wave potentials of the Pb2+ ion on the concentration of PPTA in the organic phase indicates that the ion transfer is facilitated by the formation of 1:2(metal:ligand) complex in the organic phase with the association constant(lgβ2) of(17.1±0.2).  相似文献   

20.
Novel monoazacryptand-type fluorescent chemosensors, (derived from an 18-crown-6) and (derived from a 15-crown-5) both with a pyrene ring as their photoresponsive moiety, were synthesized. Their fluorescence properties for alkali metal and alkaline earth metal cations in water were then examined. The detection of metal cations was accomplished by a change in the fluorescence intensity of the host compounds, based on a photoinduced electron transfer (PET) mechanism. In aqueous solution, showed little fluorescence upon the addition of Ba2+ because of the very weak complexation with Ba2+, but the presence of micelles of polyoxyethylene(10) isooctylphenyl ether (Triton X-100) enabled to show highly sensitive and selective Ba2+ detection among alkali metal and alkaline earth metal cations. With respect to the selective fluorescent detection of important metal cations (Na+, K+, Mg2+, Ca2+) relevant to living organisms, was found to detect K+ with high selectivity in aqueous micellar solutions of polyoxyethylene(20) sorbitan monostearate (Tween-60). The selectivity for metal cations was mainly dependent on the goodness of fit of the host cavity and the metal cation size. In the presence of anionic surfactants, detected alkaline earth metal cations more effectively than alkali metal cations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号