首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present the cobalt(III)‐mediated interaction between polyhistidine (His)‐tagged proteins and nitrilotriacetic acid (NTA)‐modified surfaces as a general approach for a permanent, oriented, and specific protein immobilization. In this approach, we first form the well‐established Co2+‐mediated interaction between NTA and His‐tagged proteins and subsequently oxidize the Co2+ center in the complex to Co3+. Unlike conventionally used Ni2+‐ or Co2+‐mediated immobilization, the resulting Co3+‐mediated immobilization is resistant toward strong ligands, such as imidazole and ethylenediaminetetraacetic acid (EDTA), and washing off over time because of the high thermodynamic and kinetic stability of the Co3+ complex. This immobilization method is compatible with a wide variety of surface coatings, including silane self‐assembled monolayers (SAMs) on glass, thiol SAMs on gold surfaces, and supported lipid bilayers. Furthermore, once the cobalt center has been oxidized, it becomes inert toward reducing agents, specific and unspecific interactions, so that it can be used to orthogonally functionalize surfaces with multiple proteins. Overall, the large number of available His‐tagged proteins and materials with NTA groups make the Co3+‐mediated interaction an attractive and widely applicable platform for protein immobilization.  相似文献   

2.
In situ complexation reactions between 2,6-bis(3,5-dimethylpyrazoyl)pyridine (bdmpp) and some transition metals (Cu2+, Co2+ and Ni2+) were studied with a new method in liquid cell using FT-IR. In this method, the FT-IR spectrum of the solution of ligand was defined as a background, and then the changes in the FT-IR spectra by the addition of the metal salts were investigated. This method allows one to obtain the spectra of the ligand-metal complex before yielding the solid-state product. Complexation ratios (M/L) of these metals with bdmpp were found 1/1, 1/2 and 1/2, for Cu, Co and Ni, respectively. Studying with Mg2+ and Ca2+ ions showed that there were no interaction between bdmpp and these metal ions in methanol.  相似文献   

3.
According to literature reports and our own findings, the binding of new Ni2+‐preloaded bis(nitrilotriacetic acid) (NTA) ligands with polyhistidine‐tagged proteins has been found to be accompanied by a one‐ to two‐order‐of‐magnitude increase in affinity, compared to the binding of a single Ni2+‐preloaded NTA moiety. In spite of the introduction of a second NTA chelating group, a cooperative effect that is less than the theoretical maximum has been observed. Herein, we present a rational explanation for the observed stability of the ternary complex involving the postulated bis‐NTA–(Ni2+)2 species and multivalent polyhistidine tags. We have found that prior to the formation of the ternary complex, the Ni2+‐preloading step of bis‐NTA ligands does not form the expected bis‐NTA–(Ni2+)2 exclusively. Instead of the major formation of bis‐NTA–(Ni2+)2 species, it appears that cyclic discrete 1:1 and 2:2 entities are predominantly formed. It is proposed that these species interact upon ring‐opening with multivalent histidine tags. The occurrence of this phenomena accounts for the overall one‐ to two‐order‐of‐magnitude increase in affinity of ternary complexes involving bis‐NTA ligands.  相似文献   

4.
The syntheses of organochalcogen-supported azacalix[3]arenes are described in a one-pot manner in satisfactory yields. A remarkably selective potentiometric response was accomplished for uranyl ions over a variety of other metal ions, including alkali (Na+, K+), alkaline-earth (Mg2+, Ca2+, Ba2+), transition and heavy metal ions (Co2+, Ni2+, Cu2+, Ag+, Fe3+, Zn2+, Cd2+ and Pb2+) using an ion-selective electrode based on compound 3 incorporated into a polymeric (PVC) membrane.  相似文献   

5.
Thermodynamics of the interaction between Ni2+ and human growth hormone (hGH) were determined at 27 °C in Nail solution by isothermal titration calorimetry. A new method to predict protein penetration and the effect of metal ions on the stability of proteins is introduced. The new solvation model was used to reproduce the enthalpies of Ni2+-hGH interaction over the whole range of Ni2+ concentrations. The solvation parameters recovered from the new equation, attributed to the structural change of hGH and its biological activity.  相似文献   

6.
Two novel fluorescent Zn2+ chemosensors were synthesized in four steps from inexpensive starting materials. They exhibited very strong fluorescence responses to Zn2+ and had remarkably high selectivity to Zn2+ than other metal ions including Mg2+, Ca2+, Ni2+, Cu2+, and Cd2+. These two new molecules could be used as low-priced yet high-quality Zn2+ chemosensors.  相似文献   

7.
Summary Sodium alginate sol can be converted into ionotropic gels by diffusion of di/or trivalent metal ions. The kinetics of this phase transition is studied by two different methods. It is found that the rate of gel membrane formation at the earlier stages is greater than that of the further gel growth. The kinetic studies of gel formation in the presence of a mixture of Cu2+ ions with either Co2+ or Ni2+ ions show that the exhaust of Co2+ and Ni2- ions is remarkable only at the first stage of gel formation. Meanwhile the Cu2+ ions continue exchanging all the time with Na2+ ions in the alginate sol. The activation energy of gel formation is found to range between 17–23 kJ mol, indicating the diffusion control of the process.With 6 figures and 3 tables  相似文献   

8.
We measured quantitative spectra of firefly (Photinus pyralis) bioluminescence in the presence of Zn2+ and other bivalent metal ions to investigate the effects of these metal ions on luciferin‐luciferase reaction. We studied the dependence of the quantum yield and spectrum on quantity and kind of bivalent metal ions. Adding various amounts of Mg2+, Mn2+ and Ca2+ produced virtually no change in the quantum yields or the spectra of bioluminescence. In contrast, increasing amounts of ions such as Zn2+ and Cd2+ decreased quantum yields and changed the bioluminescence color from yellow‐green to red. Quantitative analysis showed that the sensitivities of the quantum yield and color to various metal ions were in the order of Hg2+>Zn2+, Cd2+>Ni2+, Co2+, Fe2+≫Mg2+, Mn2+, Ca2+. We propose that the changes in quantum yield and spectrum caused by the metal ions are due to their effect on luciferase that surrounds oxyluciferin during its radioactive decay. We also found that having more metal ions accelerated bioluminescence reactions. The sensitivity of the reaction rate had no correlation with those of the quantum yield and spectrum.  相似文献   

9.
The binding interaction of captopril (CPL) with biologically active metal ions Mg2+, Ca2+, Mn2+, Co2+, Ni2+, Cu2+ and Zn2+ was investigated in an aqueous acidic medium by fluorescence spectroscopy. The experimental results showed that the metal ions quenched the intrinsic fluorescence of CPL by forming CPL‐metal complexes. It was found that static quenching was the main reason for the fluorescence quenching. The quenching constant in the case of Cu2+ was highest among all quenchers, perhaps due to its high nuclear charge and small size. Quenching of CPL by metal ions follows the order Cu2+>Ni2+>Co2+>Ca2+>Zn2+>Mn2+>Mg2+. The quenching constant Ksv, bimolecular quenching constant Kq, binding constant K and the binding sites "n" were determined together with their thermodynamic parameters at 27 and 37°C. The positive entropy change indicated the gain in configurational entropy as a result of chelation. The process of interaction was spontaneous and mainly ΔS‐driven.  相似文献   

10.
The kinetics of the reaction of murexide with different divalent metal ions of class A and B have been measured by the temperature-jump-relaxation method. The second-order formation rate constant increases in the sequence Ni2+ < Co2+ < Mn2+ < Zn2+ < Cd2+ ? Cu2+ ? Ca2+ < Sr2+ < Ba2+ < Pb2+. Thermodynamic data obtained from kinetic and equilibrium studies, respectively, are in good agreement. The results are compared with the characteristic rate constants for H2O-exchange in the inner coordination sphere of these metal ions, which follow the same sequence. The rate constants of the reaction of murexide with various trivalent metal ions, including the lanthanides, are also discussed in terms of current ideas on metal complex formation.  相似文献   

11.
New amphiphilic gelators that contained both Schiff base and L ‐glutamide moieties, abbreviated as o‐SLG and p‐SLG, were synthesized and their self‐assembly in various organic solvents in the absence and presence of metal ions was investigated. Gelation test revealed that o‐SLG formed a thermotropic gel in many organic solvents, whilst p‐SLG did not. When metal ions, such as Cu2+, Zn2+, Mg2+, Ni2+, were added, different behaviors were observed. The addition of Cu2+ induced p‐SLG to from an organogel. In the case of o‐SLG, the addition of Cu2+ and Mg2+ ions maintained the gelating ability of the compound, whilst Zn2+ and Ni2+ ions destroyed the gel. In addition, the introduction of Cu2+ ions caused the nanofiber gel to perform a chiral twist, whilst the Mg2+ ions enhanced the fluorescence of the gel. More interestingly, the Mg2+‐ion‐mediated organogel showed differences in the fluorescence quenching by D ‐ and L ‐tartaric acid, thus showing a chiral recognition ability.  相似文献   

12.
Silica (SiO2) nanospheres (NSs) with immobilized metal ligands have been prepared for the affinity separation of proteins. First, SiO2 NSs were prepared by controlled hydrolysis of tetraethoxysilane in a basic aqueous-ethanol solution. Then through reaction of iminodiacetic acid (IDA) with 3-glycidoxypropyltrimethoxysilane and immobilization of them onto the surfaces of above SiO2 NSs, novel affinity adsorbents with IDA chelating groups were obtained. After chelating Ni2+ ions, the SiO2–IDA–Ni2+ NSs were applied to separate his-tagged proteins directly from the mixture of lysed cells. The SiO2–IDA–Ni2+ NSs present negligible nonspecific protein adsorption and high protein binding ability (28.3 mg/g).  相似文献   

13.
The paper presents a novel method for the separation/enrichment of trace Ni2+ using microcrystalline phenolphthalein loaded with chelate prior to the determination by spectrophotometry. The effects of different parameters, such as the dosages of phenolphthalein and sodium diethyldithiocarbamate (DDTC), various salts and acidity on the enrichment yield of Ni2+ have been investigated to select the experimental conditions. The possible enrichment mechanism of Ni2+ was discussed. The results showed that under the optimum conditions, Ni2+ could be quantificationally adsorbed on the surface of microcrystalline phenolphthalein in the form of the chelate precipitate of Ni(DDTC)2, while K+, Na+, Ca2+, Mg2+, Zn2+, Fe2+, Al2+, Pb2+ and Cd2+ could not be adsorbed at all. Therefore, Ni2+ was completely separated from the above metal ions in the solution. A new method for the separation/enrichment and determination of trace nickel using microcrystalline phenolphthalein loaded with chelate was established. The proposed method has been successfully applied to the determination of Ni2+ in various water samples, and the results agreed well with those obtained by FAAS method.  相似文献   

14.
A simple epoxy-based polymer 1 bearing 1-naphthylamine units has been synthesized and its recognition behaviors toward various metal ions have been investigated in THF-water (8:2, v/v) solution. The designed polymer 1 was found to exhibit selective ON-OFF-type fluorosensing behavior toward Fe3+ ions over other representative metal ions such as Cu2+, Zn2+, Co2+, Ni2+, and Hg2+ ions.  相似文献   

15.
A new coumarin-based sensor molecule (L1) has been synthesized and this was found to bind calcium and magnesium ions more effectively as compared to other alkali/alkaline earth/lanthanide and certain transition metal ions. A significant enhancement in fluorescence intensity was observed on binding to Ca2+ and Mg2+ ions; while a minor quenching was observed for weakly bound Hg2+, Ni2+, Fe3+, and Co2+ ions. PET process, coupled with the ICT process, is proposed to explain the observed spectral response.  相似文献   

16.
Graphene quantum dots (GQDs), inheriting the superb property of graphene oxide, possess smaller lateral size and high biocompatibility, thus having potential in biomedical applications. We previously discovered that GQDs, combining with Cu2+ ions, could cleave DNA primarily through an oxidative pathway; yet, oxidative DNA cleavage is not practically preferred in biology. In this work, we explore the DNA cleavage ability of GQDs with Zn2+ and Ni2+. Zn2+ and Ni2+ alone are incapable of cleaving supercoiled DNA, but when combining with the GQDs, Zn2+ and Ni2+ exhibit DNA cleavage activity. However, the activity of these two systems is much lower than that of GQDs/Cu2+, and GQDs/Ni2+ is less active than GQDs/Zn2+. The functional mechanism of GQDs/Ni2+ and GQDs/Zn2+ is different from that of GQDs/Cu2+. The GQDs play a key role in the two systems; the redox inactive Zn2+ and Ni2+ ions assist to generate the oxidative species that eventually lead to the DNA cleavage. The current results together with our previous result indicate that GQDs together with metal ions can cleave supercoiled DNA, and their cleavage activities depend on the properties of metal ions: for redox active metal ions, metal ions play key roles, for redox inactive metal ions, GQDs are dominant.  相似文献   

17.
The reaction of lignosulfonate with the Co2+, Ni2+, and Cu2+ ions has been studied by the methods of gel chromatography, potentiometric titration, and UV spectroscopy. Lignosulfonate forms polymer-metal complexes with the metal ions over a wide pH range. In this process the size of the macromolecule scarcely changes, thanks to the reticular structure of the lignosulfonate. The capacity of lignin with respect to Cu2+ ions has been determined.  相似文献   

18.
Polyester having amino sulfonic acid moieties (TBES) was prepared by a liquid/solid biphase polycondensation of terephthaloyl chloride (TPC) and N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid (BES) in trimethyl phosphate (TMP) using triethylamine (TEA) as an acid acceptor. Blends of TBES with PVA and their metal complexes with Ni2+ and Co2+ ions were prepared. A strong interaction was observed between TBES and PVA. An electric conductivity of 10−6 S cm−1 was attained for the blend films containing about 5 wt % water. A coordination structure with two chelate rings is proposed for the metal complex with Ni2+ and Co2+ ions when the molar ratio of amino sulfonic acid groups in TBES to metal ions is larger than 2. Polymer blends complexed with Ni2+ or Co2+ ions result in semi-interpenetrating polymer networks from chelate formation. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 3561–3569, 1997  相似文献   

19.
《Chemphyschem》2003,4(3):268-275
A generic method is described for the reversible immobilization of polyhistidine‐bearing polypeptides and proteins on attenuated total reflecting (ATR) sensor surfaces for the detection of biomolecular interactions by FTIR spectroscopy. Nitrilotriacetic acid (NTA) groups are covalently attached to self‐assembled monolayers of either thioalkanes on gold films or mercaptosilanes on silicon dioxide films deposited on germanium internal reflection elements. Complex formation between Ni2+ ions and NTA groups activates the ATR sensor surface for the selective binding of polyhistidine sequences. This approach not only allows a stable and reversible immobilization of histidine‐tagged peptides (His–peptides) but also simultaneously allows the direct in situ quantification of surface‐adsorbed molecules from their specific FTIR spectral bands. The surface concentrations of both NTA and His–peptide on silanized surfaces were determined to be 1.1 and 0.4 molecules nm?2, respectively, which means that the surface is densely covered. A comparison of experimental FTIR spectra with simulated spectra reveals a surface‐enhancement effect of one order of magnitude for the gold surfaces. With the presented sensor surfaces, new ways are opened up to investigate, in situ and with high sensitivity and reproducibility, protein–ligand, protein–protein, protein–DNA interactions, and DNA hybridization by ATR–FTIR spectroscopy.  相似文献   

20.
Compound 1 containing two nitronyl nitroxide units bridged by tetra(ethyleneoxy) was designed and synthesized for sensing metal ions, by taking the features of nitronyl nitroxides: a chromophore showing absorption in visible range, reversible oxidation/reduction and coordination to metal ions. The absorption spectrum of 1 was altered markedly upon mixing with a few rare earth metal ions and some transition metal ions. Moreover, the oxidation potential of 1 was shifted to more positive range in the presence of metal ions including Pb2+, Ba2+, and Ca2+. Thus, compound 1 can sense metal ions both spectroscopically and electrochemically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号