首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We developed and employed the incremental gauge cell method to calculate the chemical potential (and thus free energies) of long, flexible homopolymer chains of Lennard-Jones beads with harmonic bonds. The free energy of these chains was calculated with respect to three external conditions: in the zero-density bulk limit, confined in a spherical pore with hard walls, and confined in a spherical pore with attractive pores, the latter case being an analog of adsorption. Using the incremental gauge cell method, we calculated the incremental chemical potential of free polymer chains before and after the globual-random coil transitions. We also found that chains confined in attractive pores exhibit behaviors typical of low temperature physisorption isotherms, such as layering followed by capillary condensation.  相似文献   

2.
By using Monte Carlo simulation, adsorption of both end-adsorbed and middle-adsorbed symmetric triblock copolymers from a non-selective solvent on an impenetrable surface has been studied. Influences of the adsorption energy, the bulk concentration, the chain composition and the chain length on the adsorption behavior including the surface coverage, the adsorption amount and the layer thickness are presented. It is shown that the total surface coverage for both end-adsorbed and middle-adsorbed copolymers increases monotonically as the bulk concentration increases. The higher the adsorption energy and the more the attractive segments, the higher the total surface coverage is exhibited. Surface coverage θ decreases with increasing the length of the non-attractive segments, but the product of θ and the proportion of the non-attractive segments in a triblock copolymer chain is nearly independent of the chain length. The adsorption amount increases almost monotonically with the bulk concentration. The logarithm of the adsorption amount is a linear function of the reciprocal of the reduced temperature. When the adsorption energy is large, the adsorption amount exhibits a maximum as the composition of the attractive segment increases. The adsorption isotherms of copolymers with different length of the non-attractive segments can be mapped onto a single curve under certain energy indicating that copolymers with different chain length have the same adsorption amount. The adsorption layer thickness for the end-adsorbed copolymers decreases as the energy and the number of adsorbing segments increases. The longer non-attractive segments, the larger adsorbed layer thickness is found. The tails mainly governs the adsorption layer thickness.  相似文献   

3.
Adsorption of a monodisperse polymer at a solid-liquid interface is comprehensively studied by Monte Carlo simulation. The distributions of total segment density and different adsorption configurations including trains, loops and tails are obtained. Effects of reduced exchange interaction energies $ \tilde \varepsilon $, bulk concentrations ϕ*, reduced adsorption energies $ \tilde \varepsilon_a $ and chain lengths r on those distributions are studied. Comparisons with predictions of the Scheutjens-Fleer (SF) theory are also provided. Generally, the chain molecules are more easily adsorbed at an interface in non-solvents than in good solvents. Longer chains are more likely to be adsorbed than shorter ones. The reduced adsorption energy and the bulk concentration have shown strong effects on the segment-density distributions. In addition, the thickness of the adsorption layer is mainly determined by the extension of tails into the bulk solution, which are in turn determined by the chain length. The trains, loops and tails are overwhelmingly short. On the other hand, the amounts of trains and loops are usually much greater than that of tails. Though not perfect, satisfactory agreement is found in comparison with the theoretical predictions of the SF theory.  相似文献   

4.
The single component adsorption of alkanes in carbon slit pores was studied using configurational-biased grand canonical Monte Carlo simulations. Wide ranges of temperature, pressure, alkane chain length, and slit height were studied to evaluate their effects on adsorption. Adsorption isotherms and density and orientation profiles were calculated. The behavior of long alkanes at high temperatures was found to be similar to short alkanes at lower temperatures. This suggests that the isotherms may be related through the Polanyi potential theory.  相似文献   

5.
Molecular simulations of binary adsorption in porous materials are a useful complement to experimental studies of mixture adsorption. Most molecular simulations of binary adsorption are performed using grand canonical Monte Carlo (GCMC) to independently examine a range of state points of interest. A disadvantage of this approach is that it only yields information at a discrete set of state points; therefore, if a complete isotherm is required for arbitrary conditions, some type of data fitting or interpolation must be used in combination with the GCMC data. We show that the transition matrix Monte Carlo (TMMC) method of Shen and Errington (Shen, V. K.; Errington, J. R. J. Chem.Phys. 2005, 122, 064508) is well-suited to simulation of binary adsorption in porous materials. At the completion of a TMMC simulation, the adsorption isotherm for all possible bulk phase compositions and pressures is available without data fitting or interpolation. It is also straightforward to use results from TMMC to compute derivatives of the isotherm such as the mixture thermodynamic correction factors, partial differential ln f(i)/partial differential ln c(j), again without data fitting or interpolation. This approach should be useful in contexts where information on the full adsorption isotherm is needed, such as the design of adsorption- or membrane-based separations.  相似文献   

6.
A modified Monte Carlo method in conjunction with the canonical and grand canonical ensembles is proposed for simulating adsorption in spatially inhomogeneous porous systems. Unlike the traditional Monte Carlo simulation in terms of the grand canonical ensemble, the simulation for the regions of pore space having no direct communication with the bulk phase is performed in local conditions of the canonical ensemble.  相似文献   

7.
8.
The effect of strong and weak hydrophilic sites, Al atoms with associated extraframework Na cations and silanol nests, respectively, in high-silica MFI zeolites on water adsorption was investigated using Monte Carlo simulations. For this purpose, a new empirical model to represent potential energy interactions between water molecules and the MFI framework was developed, which reproduced the hydrophobic characteristics of a siliceous MFI-type zeolite, silicalite-1, with both the vapor-phase adsorption isotherm and heats of adsorption at 298 K being in good agreement with experimental data. The proposed model is also compatible with previous hydrocarbon potential models and can be used in the adsorption simulations of VOC-water mixtures. Adsorption simulations revealed that strongly hydrophilic Al sites in Na-ZSM-5 zeolites coordinate two water molecules per site at low coverage, which promotes water clustering in the vicinity of these sites. However, weakly hydrophilic silanol nests in silicalite-1 are in coordination with a single water molecule per site, which does not affect the adsorption capacity significantly as expected. However, even in the presence of 0.125 silanol nest per unit cell, the increase in the heat of adsorption at low coverage is drastic.  相似文献   

9.
Adsorption of supercritical carbon dioxide on two kinds of zeolites with identical chemical composition but different pore structure (NaA and NaX) was studied using the Gibbs ensemble Monte Carlo simulation. The model frameworks for the two zeolites with SiAl ratio being unity have been chosen as the solid structures in the simulation. The adsorption behaviors of supercritical CO2 on the NaA and NaX zeolites, based on the adsorption isotherms and isosteric heats of adsorption, were discussed in detail and were compared with the available experimental results. A good agreement between the simulated and experimental results is obtained for both the adsorbed amount and the bulk phase density. The intermediate configurational snapshots and the radial distribution functions between zeolite and adsorbed CO2 molecules were collected in order to investigate the preferable adsorption locations and the confined structure behavior of CO2. The structure behaviors of the adsorbed CO2 molecules show various performances, as compared with the bulk phase, due to the confined effect in the zeolite pores.  相似文献   

10.
A general Monte Carlo code for the simulation of X-ray fluorescence spectrometers, described in a previous paper is extended to predict the spectral response of instruments employing polarized exciting radiation. Details of the calculation method specific for the correct simulation of photon-matter scatter interactions in case of polarized X-ray beams are presented. Comparisons are made with experimentally collected spectral data obtained from a monochromatic X-ray fluorescence setup installed at a synchrotron radiation source. The use of the simulation code for quantitative analysis of intermediate and massive samples is also demonstrated.  相似文献   

11.
陈鹏 《高分子科学》2014,32(5):595-602
Thin films of polymer blends composed of alternating copolymer, diblock copolymer and/or homopolymer are studied using Monte Carlo simulation. A multilayer morphology is observed in the film, that is, the blended polymers assemble into individual domains arranged from interior to the surfaces of the film. The coexisting components residing throughout the neighboring domains in the film make no distinguishable interface between any neighboring domains. By this means, it forms a vertical composition gradient in the polymeric film. Being different from layer-by-layer deposition of polyelectrolyte or hydrogen bonding approach etc., the layered structure in this study is formed by polymer blending in one step. Alternating copolymers are found to be essential components to form vertical composition gradient (layered structure) in thin films.  相似文献   

12.
This paper describes an attempt to study the electrophoresis mobility of a DNA molecule in a gel by means of a Monte Carlo simulation. We find that the electrophoresis mobility mu can be well described by the empirical equation mu v kappa 1/N + kappa 2E2 with N being the number of monomers of the model chain and E being the applied field. For small E the data can merge into the linear response result mu = kappa 1/N. The paper also discusses necessary extensions of the present approach.  相似文献   

13.
We present a Metropolis Monte Carlo simulation algorithm for the Tpπ-ensemble, where T is the temperature, p is the overall external pressure, and π is the osmotic pressure across the membrane. The algorithm, which can be applied to small molecules or sorption of small molecules in polymer networks, is tested for the case of Lennard-Jones interactions.  相似文献   

14.
Monte Carlo Modelling of random polymer chains, course grained onto a cubic F lattice, provides the ability to monitor the long range relaxation processes and the dynamic parameters of chains up to 400 units long. The model, described and verified by Haire et al. (Haire KR, Carver TJ, Windle AH. A Monte Carlo model for dense polymer systems and its interlocking with molecular dynamics simulation. Computational and Theoretical Polymer Science 2000; in press), is here applied to the study of molecular parameters in the vicinity of different types of surface and also to the process of polymer welding, whereby adhesion between two adjacent surfaces is achieved by the interpenetration of chains which are across the surface.The model demonstrates that a surface distorts the conformation of chains adjacent to it to give an oblate molecular envelope, that the concentration of vacant sites and chain ends increases near to the surface and that the density of points representing the centres of mass of the chains increases in the sub-surface regions. These results confirm earlier predictions and provide additional confidence in the model.Modelling of the welding process leads to the parameter intrinsic weld time, tw, which is the time from initial perfect contact of the surfaces to the achievement of a weld within which the chain conformation is indistinguishable from the bulk. After the initial period in which the mating surfaces roughen, the welding proceeds according to the t1/4 law predicted by reptation theory. The time to a given level of interdiffusion across the boundary is proportional to the chain length l, a comparatively weak dependence, while tw is proportional to l3, a strong dependence. This is the same dependence on length as for the relaxation time of the chain end-to-end vectors. In fact, the agreement between the relaxation time, measured on the model of the bulk, and tw is surprisingly close, at least for the monodisperse polymers investigated here.  相似文献   

15.
A Monte Carlo simulation method is presented for simulation of phase transitions, with emphasis on the study of crystallization. The method relies on a random walk in order parameter Phi(q(N)) space to calculate a free energy profile between the two coexisting phases. The energy and volume data generated over the course of the simulation are subsequently reweighed to identify the precise conditions for phase coexistence. The usefulness of the method is demonstrated in the context of crystallization of a purely repulsive Lennard-Jones system. A systematic analysis of precritical and critical nuclei as a function of supercooling reveals a gradual change from a bcc to a fcc structure inside the crystalline nucleus as it grows at large degrees of supercooling. The method is generally applicable and is expected to find applications in systems for which two or more coexisting phases can be distinguished through one or more order parameters.  相似文献   

16.
We present Monte Carlo simulations of the equation of state and radial distribution function for a model fluid composed of hard spheroids.  相似文献   

17.
Monte Carlo simulations deal with crudely simplified but well-defined models and have the advantage that they treat the statistical thermodynamics of the considered model exactly (apart from statistical errors and problems due to finite size effects). Therefore, these simulations are well suited to test various approximate theories of block copolymer ordering, e.g. the self-consistent field theory. Recent examples of this approach include the study of block copolymer ordering at melt surfaces and confinement effects in thin films, adsorption of block copolymers at interfaces of unmixed homopolymer blends, the phase behavior of ternary mixtures of two homopolymers and their block copolymer, and micelle formation in selective solvents.  相似文献   

18.
Monte Carlo simulations have been carried out on DNA oligomers using an internal coordinate model associated with a pseudorotational representation of sugar repuckering. It is shown that when this model is combined with the scaled collective variable approach of Noguti and Go, much more efficient simulations are obtained than with simple single variable steps. Application of this method to a DNA oligomer containing a recognition site for the TATA-box binding protein leads to striking similarities with results recently obtained from a 1-ns molecular dynamics simulation using explicit solvent and counterions. In particular, large amplitude bending fluctuations are observed directed toward the major groove. Conformational analysis of the Monte Carlo simulation shows clear base sequence effects on conformational fluctuations and also that the DNA energy hypersurface, like that of proteins, is complex with many local, conformational substates. © 1997 John Wiley & Sons, Inc. J Comput Chem 18 : 2001–2011, 1997  相似文献   

19.
The adsorption of a single and negatively charged polyion with varying flexibility onto a surface carrying both negative and positive charges representing a charged membrane surface has been investigated by using a simple model employing Monte Carlo simulations. The polyion was represented by a sequence of negatively charged hard spheres connected with harmonic bonds. The charged surface groups were also represented by charged hard spheres, and they were positioned on a hard surface slightly protruding into the solution. The surface charges were either frozen in a liquidlike structure or laterally mobile. With a large excess of positive surface charges, the classical picture of a strongly adsorbed polyion with an extended and flat configuration emerged. However, adsorption also appeared at a net neutral surface or at a weakly negatively charged surface, and at these conditions the adsorption was stronger with a flexible polyion as compared to a semiflexible one, two features not appearing in simpler models containing homogeneously charged surfaces. The presence of charged surface patches (frozen surface charges) and the ability of polarization of the surface charges (mobile surface charges) are the main reasons for the enhanced adsorption. The stronger adsorption with the flexible chain is caused by its greater ability to spatially correlate with the surface charges.  相似文献   

20.
The grand canonical Monte Carlo method is used to simulate the adsorption isotherms of water molecules on different types of model soot particles. The soot particles are modeled by graphite-type layers arranged in an onionlike structure that contains randomly distributed hydrophilic sites, such as OH and COOH groups. The calculated water adsorption isotherm at 298 K exhibits different characteristic shapes depending both on the type and the location of the hydrophilic sites and also on the size of the pores inside the soot particle. The different shapes of the adsorption isotherms result from different ways of water aggregation in or/and around the soot particle. The present results show the very weak influence of the OH sites on the water adsorption process when compared to the COOH sites. The results of these simulations can help in interpreting the experimental isotherms of water adsorbed on aircraft soot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号