首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the first paper (J. Phys. Chem. B, 2006, 110, 10878), effective ion-ion potentials in SPC/E water were obtained for Me-Me, Me-Cl-, and Cl(-)-Cl- pairs, where Me is Li+, Na+, K+, Mg2+, Ca2+, Sr2+, and Ba2+ cations. In this second part of the study of effective interionic potentials, ion-ion distribution functions obtained from implicit-water Monte Carlo simulations of electrolyte solution with these potentials have been explored. This analysis verifies the range of applicability of the primitive model of electrolyte. It is shown that this approximation can be applied to monovalent electrolyte solutions in a wide range of concentrations, whereas the nature of ion-ion interactions is notably different for 2:1 electrolytes. An improved model of ions is discussed. The model includes approximations of the ion hydration shell polarization and specific short-range ion-ion interaction. It allows approximation of the potential of mean force acting on ions in strong electric fields of highly charged macromolecules and bilayers.  相似文献   

2.
We used both localized and periodic calculations on a series of monovalent (Li+, Na+, K+, Rb+, Cs+) and divalent (Mg2+, Ca2+, Sr2+, Ba2+) cations to monitor their effect on the swelling of clays. The activity order obtained for the exchangeable cations among all the monovalent and divalent series studied: Ca2+ > Sr2+ > Mg2+ > Rb+ > Ba2+ > Na+ > Li+ > Cs+ > K+. We have shown that, in case of dioctahedral smectite, the hydroxyl groups play a major role in their interaction with water and other polar molecules in the presence of an interlayer cation. We studied both type of clays, with a different surface structure and with/without water using a periodic calculation. Interlayer cations and charged 2:1 clay surfaces interact strongly with polar solvents; when it is in an aqueous medium, clay expands and the phenomenon is known as crystalline swelling. The extent of swelling is controlled by a balance between relatively strong swelling forces and electrostatic forces of attraction between the negatively charged phyllosilicate layer and the positively charged interlayer cation. We have calculated the solvation energy at the first hydration shell of an exchangeable cation, but the results do not correspond directly to the experimental d-spacing values. A novel quantitative scale is proposed with the numbers generated by the relative nucleophilicity of the active cation sites in their hydrated state through Fukui functions within the helm of the hard soft acid base principle. The solvation effect thus measured show a perfect match with experiment, which proposes that the reactivity index calculation with a first hydration shell could rationalize the swelling mechanism for exchangeable cations. The conformers after electron donation or acceptance propose the swelling mechanism for monovalent and divalent cations.  相似文献   

3.
To gain insight into the interaction of Be2+ ions with negatively charged protein residues, the free energy changes associated with the replacement of water molecules in the first hydration shell of with one and two acetate anions were computed for the gas phase reactions using ab initio methods at the MP2 and DFT-B3LYP computational levels. Both unidentate and bidentate modes of coordination of the carboxylate group with the Be2+ ion are considered. Continuum dielectric calculations were then performed to estimate the corresponding free energy changes in several environments of varying dielectric strength. Environments with dielectric constants of 2 and 4, which represent a protein interior, and 78, which corresponds to water, were used. It is found that the free energy changes for the substitution reactions decrease in magnitude with increasing dielectric strength, in agreement with similar results reported for Mg2+, Ca2+, and Zn2+ (Dudev et al. J. Phys. Chem. B 2000, 104, 3692). However, unlike Mg2+, Ca2+, and Zn2+, the free energy change for single-anion or concerted two-anion substitution reactions with remains negative and indicates the reactions are still favorable in the high dielectric aqueous environment. It is also found that the unidentate mode of binding is favored over the bidentate mode, and this is attributed, in part, to the introduction of hydrogen bonds between one carboxylate oxygen and a water molecule within the cluster when unidentate binding with Be2+ is involved.  相似文献   

4.
5.
Based on the experimental data on the dielectric dispersion and the static dielectric permittivity of solutions of strong electrolytes, the effective value of the latter in the dense layer of the hydration shell of an ion has been calculated. The calculations have been carried out in terms of the three-layer model of the hydration complex. The calculations have shown that for the solutions of strong electrolytes the value of the static dielectric permittivity (dielectric constant) in the dense layer of the hydration shell of an ion proves to be close to 2 and is almost independent of the concentration and temperature.  相似文献   

6.
The potential of mean force (PMF) acting between two simple ions surrounded by SPC/E water have been determined by molecular dynamics (MD) simulations using a spherical cavity approach. Such effective ion-ion potentials were obtained for Me-Me, Me-Cl-, and Cl(-)-Cl- pairs, where Me is a Li+, Na+, K+, Mg2+, Ca2+, Sr2+, and Ba2+ cation. The ionic sizes estimated from the effective potentials are not pairwise additive, a feature in the frequently used primitive model for electrolytes. The effective potentials were used in Monte Carlo (MC) simulations with implicit water to calculate mean ion activity coefficients of LiCl, NaCl, KCl, MgCl2, CaCl2, SrCl2, and BaCl2. Predicted activities were compared with experimental ones in the electrolyte concentration range 0.1-1 M. A qualitative agreement for LiCl and a satisfactory agreement for NaCl were found, whereas the predictions for KCl by two K+ models were less coherent. In the case of alkaline earth metal ions, all experimental activities were successfully reproduced at c = 0.1 M. However, at higher concentrations, similar deviations occurred for all divalent cations, suggesting that the dependence of the permittivity on the salt concentration and the polarization deficiency arising from the ordering of water molecules in the ion hydration shells are important in such systems.  相似文献   

7.
The epsilon-modified Poisson-Boltzmann (-MPB) equations ( J. Phys. Chem. B, 2007, 111, 5264) have been solved on a three-dimensional grid for an all-atom geometry model of B-DNA. The approach is based on the implicit solvent model including finite sizes of hydrated ions and a dielectric approximation of the ion hydration shell. Results were obtained for the detailed geometry model of B-DNA in dilute and moderately concentrated solutions of NaCl and CaCl(2). All -MPB parameters of ions and dielectric medium were extracted from published results of all-atom molecular dynamics simulations. The study allows evaluations of the ion size, interionic correlation, and the solvent dielectric saturation effects on the ion distributions around DNA. It unambiguously suggests that the difference between the -MPB and Poisson-Boltzmann distributions of ions is low for Na(+) counterions. Such a difference in the case of divalent counterions Ca(2+) is dramatic: the dielectric saturation of the ion hydration shell leads to point-like adsorption of Ca(2+) on the phosphate groups of DNA. The -MPB equations were also applied to calculate the energy of interaction between two B-DNA molecules. Results agree with previously published simulations and experimental data. Some aspects of ion specificity of polyelectrolyte properties are discussed.  相似文献   

8.
Interactions between metal ions and amino acids are common both in solution and in the gas phase. Here, the effect of metal ions and water on the structure of glycine is examined. The effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) and water on structures of Gly.Mn+(H2O)m and GlyZwitt.Mn+(H2O)m (m = 0, 2, 5) complexes have been determined theoretically by employing the hybrid B3LYP exchange-correlation functional and using extended basis sets. Selected calculations were carried out also by means of CBS-QB3 model chemistry. The interaction enthalpies, entropies, and Gibbs energies of eight complexes Gly.Mn+ (Mn+ = Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) were determined at the B3LYP density functional level of theory. The computed Gibbs energies DeltaG degrees are negative and span a rather broad energy interval (from -90 to -1100 kJ mol(-1)), meaning that the ions studied form strong complexes. The largest interaction Gibbs energy (-1076 kJ mol(-1)) was computed for the NiGly2+ complex. Calculations of the molecular structure and relative stability of the Gly.Mn+(H2O)m and GlyZwitt.Mn+(H2O)m (Mn+ = Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+; m = 0, 2, and 5) systems indicate that in the complexes with monovalent metal cations the most stable species are the NO coordinated metal cations in non-zwitterionic glycine. Divalent cations Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+ prefer coordination via the OO bifurcated bonds of the zwitterionic glycine. Stepwise addition of two and five water molecules leads to considerable changes in the relative stability of the hydrated species. Addition of two water molecules at the metal ion in both Gly.Mn+ and GlyZwitt.Mn+ complexes reduces the relative stability of metallic complexes of glycine. For Mn+ = Li+ or Na+, the addition of five water molecules does not change the relative order of stability. In the Gly.K+ complex, the solvation shell of water molecules around K+ ion has, because of the larger size of the potassium cation, a different structure with a reduced number of hydrogen-bonded contacts. This results in a net preference (by 10.3 kJ mol(-1)) of the GlyZwitt.K+H2O5 system. Addition of five water molecules to the glycine complexes containing divalent cations Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+ results in a net preference for non-zwitterionic glycine species. The computed relative Gibbs energies are quite high (-10 to -38 kJ mol(-1)), and the NO coordination is preferred in the Gly.Mn+(H2O)5 (Mn+ = Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) complexes over the OO coordination.  相似文献   

9.
10.
Single, double and triple charging of poly(propylene glycol) (PPG) (Mn = 1900 g/mol) in the presence of binary mixtures of cations (Li+, Na+, K+, Cs+, and NH4+) under electrospray ionization (ESI) conditions were investigated. For these studies, sodium ion was selected as the reference cation, and the resulting ion-intensities were evaluated as a function of the [Na+]/[C+] ratio (where C+ is the other cation, i.e., Li+, K+, Cs+ and NH4+). A linear relationship was found between INa+/IC+)and [Na+]/[C+] (INa+ and IC+ stand for the intensity of the singly charged PPG molecules cationized with Na+ and C+ ions, respectively). The slope of the INa+/IC+--[Na+]/[C+] plot (alpha) indicates the binding selectivity of Na+ ions to PPG chains with respect to cation C+. In the case of the doubly charged PPG chains, the INaNa2+/INaC2+ and INaC2+/ICC2+ versus [Na+]/[C+] ratio also yield straight lines with slopes of approximately alpha/2 and 2alpha, respectively (INaNa2+, INaC2+ and ICC2+ are the intensity of the doubly charged PPG chains cationized with two Na+ ions, Na+ and C+ ions, and two C+ ions, respectively). Similarly, linear dependences with the [Na+]/[C+] ratio for the corresponding intensity ratios of the triply charged PPG were found. Based on the value of alpha, the selectivity of the cations was found to increase in the order of Li+ < Cs+ approximately Na+ < K+ approximately NH4+. The observed relative ion intensities are interpreted on the basis of the solution state equilibrium between PPG and the cations. In addition, the investigations showed that the abundances of the doubly and triply charged PPG-containing mixed cations can be optimized in a simple way using the value of alpha.  相似文献   

11.
The cation exchange properties of alkali and alkaline earth metal cations at room temperature were investigated on an ultrafine, highly charged Na-4-mica (with the ideal mica composition Na4Mg6Al4Si4O20F4.xH2O). Ultrafine mica crystallites of 200 nm in size led to faster Sr2+ uptake kinetics in comparison to larger mica crystallites. The alkali metal ion (K+, Cs+, and Li+) exchange uptake was rapid, and complete exchange occurred within 30 min. For the alkaline earth metal ions Ba2+, Ca2+, and Mg2+, however, the exchange uptake required lengthy periods from 3 days to 4 weeks to be completed, similar to its Sr uptake, as previously reported. Kinetic models of the modified Freundlich and parabolic diffusion were examined for the experimental data on the Ba2+, Ca2+, and Mg2+ uptakes. The modified Freundlich model described well the Ba2+ ion uptake kinetics as well as that for the Sr2+ ion, while for the Ca2+ and Mg2+ ions the parabolic diffusion model showed better fitting. The alkali and alkaline earth ion exchange isotherms were also determined in comparison to the Sr2+ exchange isotherm. The thermodynamic equilibria for these cations were compared by using Kielland plots evaluated from the isotherms.  相似文献   

12.
Aqueous solutions of charged spherical macroions with variable dielectric permittivity and their associated counterions are examined within the cell model using a field theory and Monte Carlo simulations. The field theory is based on separation of fields into short- and long-wavelength terms, which are subjected to different statistical-mechanical treatments. The simulations were performed by using a new, accurate, and fast algorithm for numerical evaluation of the electrostatic polarization interaction. The field theory provides counterion distributions outside a macroion in good agreement with the simulation results over the full range from weak to strong electrostatic coupling. A low-dielectric macroion leads to a displacement of the counterions away from the macroion.  相似文献   

13.
The paper presents results of investigation of exchange of the clinoptilolite tuff cations with hydrogen ions from HCl solution of concentration 0.1 mmol cm(-3) and ammonium ions solutions of concentrations 0.0071 to 2.6 mmol cm(-3). Molal concentrations, x (mmol g(-1)) of cations exchanged in acid solution and in ammonium ions solutions were compared with molal concentrations of cations obtained by determination of the cation-exchange capacity of clinoptilolite tuff. The obtained results show that at ammonium ion concentrations lower than 0.1 mmol cm(-3), with regard to exchange capacity for particular ions, best exchanged are Na+ ions, followed by Mg2+ and Ca2+ ions, while exchange of K+ ions is the poorest (Na+ > Mg2+ > Ca2+ > K+). At ammonium concentrations from 0.2 to 1 mmol cm(-3) the order is Na+ > Ca2+ > Mg2+ > K+. At concentrations higher than 1 mmol cm(-3) the order is Na+ > Ca2+ > K+ > Mg2+. The results are a consequence of the uptake of hydrogen ions by zeolite samples in ammonium ions solutions at concentrations lower than 1 mmol cm(-3) and indicate the importance of Mg2+ (besides Na+ ions) for the exchange between clinoptilolite cations and H+ ions, in contrast to K+ ions, whose participation in the reaction with H+ ions is the lowest. During decationization of the clinoptilolite in acid solution, best exchanged are Na+, Mg2+, and Ca2+ ions, while exchange of K+ ions is the poorest. Due to poor exchange of K+ and H+ ions and good exchange of Na+, Mg2+, and Ca2+ ions, it is to be assumed that preservation of stability of the clinoptilolite structure is caused by K+ ions present in the channel C. Clinoptilolite is dissolved in the clinoptilolite A and B channels where Na+, Mg2+, and Ca2+ ions are present. On the acid-modified clinoptilolite samples, exchange of ammonium ions is poorer than on natural zeolite. The longer the contact time of the zeolite and acid solution, the worse ammonium ions exchange. It can be assumed that H+ ions exchanged with zeolite cations are consumed for solution of aluminum in the clinoptilolite structure; therefore the concentration of H+ ions as exchangeable cations decreases. In the ammonium ion solution at a concentration of 0.0065 mmol cm(-3), from the acid-modified zeolite samples, Al3+ ions are exchanged best, followed by Na+, Mg2+, Ca2+, and K+ ions. Further to the results, it is to be assumed that exchangeable Al3+ ions available from clinoptilolite dissolution are best exchanged with H+ ions in acid solution.  相似文献   

14.
Our initial study on the performance of molecular polarization methods close to a positive point charge [M. Masia, M. Probst, and R. Rey, J. Chem. Phys. 121, 7362 (2004)] is extended to the case in which a molecule interacts with a real cation. Two different methods (point dipoles and shell model) are applied to both the ion and the molecule. The results are tested against high-level ab initio calculations for a molecule (water or carbon tetrachloride) close to Li+, Na+, Mg2+, and Ca2+. The monitored observable is in all cases the dimer electric dipole as a function of the ion-molecule distance for selected molecular orientations. The moderate disagreement previously obtained for point charges at intermediate distances, and attributed to the linearity of current polarization methods (as opposed to the nonlinear effects evident in ab initio calculations), is confirmed for real cations as well. More importantly, it is found that at short separations the phenomenological polarization methods studied here substantially overestimate the dipole moment induced if the ion is described quantum chemically as well, in contrast to the dipole moment induced by a point-charge ion, for which they show a better degree of accord with ab initio results. Such behavior can be understood in terms of a decrease of atomic polarizabilities due to the repulsion between electronic charge distributions at contact separations. It is shown that a reparametrization of the Thole method for damping of the electric field, used in conjunction with any polarization scheme, allows to satisfactorily reproduce the dimer dipole at short distances. In contrast with the original approach (developed for intramolecular interactions), the present reparametrization is ion and method dependent, and corresponding parameters are given for each case.  相似文献   

15.
A comprehensive picture of the interface between aqueous solutions and the (110) surface of rutile (alpha-TiO2) is being developed by combining molecular-scale and macroscopic approaches, including experimental measurements, quantum calculations, molecular simulations, and Gouy-Chapman-Stern models. In situ X-ray reflectivity and X-ray standing-wave measurements are used to define the atomic arrangement of adsorbed ions, the coordination of interfacial water molecules, and substrate surface termination and structure. Ab initio calculations and molecular dynamics simulations, validated through direct comparison with the X-ray results, are used to predict ion distributions not measured experimentally. Potentiometric titration and ion adsorption results for rutile powders having predominant (110) surface expression provide macroscopic constraints of electrical double layer (EDL) properties (e.g., proton release) which are evaluated by comparison with a three-layer EDL model including surface oxygen proton affinities calculated using ab initio bond lengths and partial charges. These results allow a direct correlation of the three-dimensional, crystallographically controlled arrangements of various species (H2O, Na+, Rb+, Ca2+, Sr2+, Zn2+, Y3+, Nd3+) with macroscopic observables (H+ release, metal uptake, zeta potential) and thermodynamic/electrostatic constraints. All cations are found to be adsorbed as "inner sphere" species bonded directly to surface oxygen atoms, while the specific binding geometries and reaction stoichiometries are dependent on ionic radius. Ternary surface complexes of sorbed cations with electrolyte anions are not observed. Finally, surface oxygen proton affinities computed using the MUSIC model are improved by incorporation of ab initio bond lengths and hydrogen bonding information derived from MD simulations. This multitechnique and multiscale approach demonstrates the compatibility of bond-valence models of surface oxygen proton affinities and Stern-based models of the EDL structure, with the actual molecular interfacial distributions observed experimentally, revealing new insight into EDL properties including specific binding sites and hydration states of sorbed ions, interfacial solvent properties (structure, diffusivity, dielectric constant), surface protonation and hydrolysis, and the effect of solution ionic strength.  相似文献   

16.
Tunell I  Lim C 《Inorganic chemistry》2006,45(12):4811-4819
Many of the group IA and IIA metal ions, such as Na+, K+, Mg2+, and Ca2+, play crucial roles in biological functions. Previous theoretical studies generally focus on the number of water molecules bound to a particular (as opposed to all) alkali or alkaline earth cations and could not establish a single preferred CN for the heavier alkali and alkaline earth ion-water complexes. Crystal structures of hydrated Na+, K+, and Rb+ also cannot establish the preferred number of inner-shell water molecules bound to these cations. Consequently, it is unclear if the gas-phase CNs of group IA metal hydrates increase with increasing ion size, as observed for the group IIA series from the Cambridge Structural Database, and if the same factors govern the gas-phase CNs of both group IA and IIA ion-water complexes. Thus, in this work, we determine the number of water molecules directly bound to the series of alkali (Li+, Na+, K+, and Rb+) and alkaline earth (Be2+, Mg2+, Ca2+, Sr2+, and Ba2+) metal ions in the gas phase by computing the free energy for forming an isolated metal-aqua complex as a function of the number of water molecules at 298 K. The preferred gas-phase CNs of group IA hydrates appear insensitive to the ion size; they are all 4, except for Rb+, where a CN of 6 seems as likely. In contrast, the preferred gas-phase CNs of the group IIA dications increase with increasing ion size; they are 4 for Be2+, 6 for Mg2+ and Ca2+, and 7 for Sr2+ and Ba2+. An entropic penalty disfavors a gas-phase CN greater than 4 for group IA hydrates, but it does not dictate the gas-phase CNs of group IIA hydrates. Instead, interactions between the metal ion and first-shell water molecules and between first-shell and second-shell water molecules govern the preferred gas-phase CNs of the group IIA metal hydrates.  相似文献   

17.
Neutron-diffraction data on aqueous solutions of hydroxides, at solute concentrations ranging from 1 solute per 12 water molecules to 1 solute per 3 water molecules, are analyzed by means of a Monte Carlo simulation (empirical potential structure refinement), in order to determine the hydration shell of the OH- in the presence of the smaller alkali metal ions. It is demonstrated that the symmetry argument between H+ and OH- cannot be used, at least in the liquid phase at such high concentrations, for determining the hydroxide hydration shell. Water molecules in the hydration shell of K+ orient their dipole moment at about 45 degrees from the K+-water oxygen director, instead of radially as in the case of the Li+ and Na+ hydration shells. The K+-water oxygen radial distribution function shows a shallower first minimum compared to the other cation-water oxygen functions. The influence of the solutes on the water-water radial distribution functions is shown to have an effect on the water structure equivalent to an increase in the pressure of the water, depending on both ion concentration and ionic radius. The changes of the water structure in the presence of charged solutes and the differences among the hydration shells of the different cations are used to present a qualitative explanation of the observed cation mobility.  相似文献   

18.
The distribution and dynamics of alkali cations inside Na-AOT reverse micelles have been investigated using Monte Carlo and molecular dynamics simulations. Water is modeled using the extended simple point charge (SPC/E) model. Simulations were carried out for alkali salts of Li+, Na+, K+, and Cs+ placed into the aqueous core of the reverse micelle, for situations corresponding to one and three molecules of added salt. In all cases, we observe that the larger K+ and Cs+ ions exchange with the Na+ counterion; however, the smaller Li+ ion prefers to remains solvated within the core of the reverse micelle. Our study reveals that the oil-water interface of the Na-AOT reverse micelle has the greatest selectivity toward Cs+ followed by K+ and Li+. A model based on enthalpic contributions illustrates that the solvation energies of the different cations in water control the ion-exchange process. The hydration number of the first water shell for Li+ situated in the aqueous core of the reverse micelle with radius R = 14.1 A was similar to that observed at infinite dilution in bulk water.  相似文献   

19.
丁明玉  陈培榕 《分析化学》1998,26(4):425-427
发现以酒石酸和吡啶二甲酸等羧酸水溶液作淋洗剂时,钠,铵,钾,镁和钙等碱金属及碱土金属离子在ODS反相高效液相色谱柱上有明显的保留,而且相互之间能达到一定程度的分离。单独用分配或疏水作用等反相高效液相色谱的保留机理难以解释其保留行为。为此,作者提出了动态包固定相机理,即认为羧酸根阴离子因其疏水性在ODS固定相有保留,在固定相表面形成具有羧酸基阳离子交换树脂功能的动态包覆固定相。  相似文献   

20.
Various cation-exchanged montmorillonites (Li+, Na+, Ba2+, Mg2+, Ca2+, Mn2+, Co2+, Cu2+, Ag+, Cd2+, Hg2+, Al3+, Pb2+ and NH4+) were prepared from calcium montmorillonite and their properties were studied by means of X-ray diffraction and thermal analysis. The two methods give information on the cation exchange in the interlayer space only. X-ray diffraction studies at room temperature are mainly suitable for estimation of the exchange of cations of different valencies. At 500°C, when the structure is completely collapsed, the d value of montmorillonite depends on the non-hydrated ionic radius of the interlayer cation, but the measurement interval is limited for fine interpretation. The thermoanalytical method is suitable for a better distinction of different exchangeable cations of higher hydration energy on the basis of the DTG or DDTG curve. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号