首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The reaction of N-benzoylphosphoramidic dichloride with amines afforded some new N-benzoylphos-phoric triamides with formula C6H5C(O)NHP(O)(X)2, X=NH–CH(CH3)2 (1), NH–CH2–CH(CH3)2 (2), NH–CH2–CH(OCH3)2 (3), N(CH3)[CH2CH(OCH3)2] (4) and N(CH3)(C6H11) (5) that were characterized by 1H,13C,31P NMR, IR spectroscopy and elemental analysis. The structures have been determined for compounds 4 and 5 by X-ray crystallography. These compounds contain one amidic hydrogen atom and form centrosymmetric dimmers via intermolecular –P–OH–N–hydrogen bonds besides weak C–H⋯O hydrogen bonds that lead to three-dimensional polymeric clusters in the crystalline lattice.  相似文献   

2.
Two new neodymium complexes, [Nd2(abglyH)6(2,2′-bipy)2(H2O)2] · 4H2O 1 and {[Nd(abglyH)3(H2O)2] · (4,4′-bipy) · 7H2O}n 2 (abglyH2 = N-P-acetamidobenzenesulfonyl-glycine acid, 2,2′-bipy = 2,2′-bipyridine, 4,4′-bipy = 4,4′-bipyridine), have been synthesized and their structures have been measured by X-ray crystallography. In 1, nine-coordinated Nd(III) ions are bridged by two synsyn bidentate and two tridentate bridging carboxylate groups from four different abglyH anions to form dinuclear motifs, which are further connected into a 3-D supramolecular framework via hydrogen bonds between the binuclear motifs and the uncoordinated water molecules. In 2, eight-coordinated Nd(III) ions are linked by six carboxylate groups adopting a synsyn bidentate bridging fashion to form a 1-D inorganic–organic alternating linear chain. These polymeric chains generate microchannels extending along the a direction, and these cavities are occupied by discrete tetradecameric water clusters, which interact with their surroundings and finally furnish the 3-D supramolecular network via hydrogen bonds. At the same time, π–π stacking interactions between benzene rings from abglyH anions also play an important role in stabilizing the network.  相似文献   

3.
The ortho-metalated complex [Pd(x){κ 2 (C,N)-[C6H4CH2NRR′ (Y)}] (2a4a and 2b3b) was prepared by refluxing in benzene equimolecular amounts of Pd(OAc)2 and secondary benzylamine [a, EtNHCH2Ph; b, t-BuNHCH2Ph followed by addition of excess NaCl. The reaction of the complexes [Pd(x){κ 2 (C,N)-[C6H4CH2NRR′ (Y)}] (2a4a and 2b3b) with a stoichiometric amount of Ph3P=C(H)COC6H4-4-Z (Z = Br, Ph) (ZBPPY) (1:1 molar ratio), in THF at low temperature, gives the cationic derivatives [Pd(OC(Z-4-C6H4C=CHPPh3){κ 2 (C,N)-[C6H4CH2NRR′(Y)}] (5a9a, 4b6b, and 4b′6b′), in which the ylide ligand is O-coordinated to the Pd(II) center and trans to the ortho-metalated C(6)H(4) group, in an “end-on carbonyl”. Ortho-metallation, ylide O-coordination, and C-coordination in complexes (5a9a, 4b6b, and 4b′6b′) were characterized by elemental analysis as well as various spectroscopic techniques.  相似文献   

4.
1H and 13C NMR chemical shifts have been determined and assigned based on PFG 1H, 13C HMQC, and HMBC experiments for 3-(4′-X-benzyl)-4-chromenones (Ia, X = CN and Ib, X = NO2), 3-(4′-X-benzyl)-4-thiochromenones (IIa, X = Cl and IIb, X = Br), (E)-3-(4′-X-benzylidene)-4-chromanones (IIIaIIIe, X = OCH3, CH3, Cl, N(CH3)2, Br), (Z)-3-(4′-X-benzylidene)4-thiochromanones (IVaIVd, X = Cl, Br, F, OCH3), 2-benzyl-1,2,3,4-tetrahydro-1-naphthol (V), 2-benzyl- and (E)-2-benzylidene-1-tetralones (VI and VII), and (E)-2-benzylidene-1-benzosuberol (VIII). The crystal structures have been determined for the following seven compounds: derivatives of 4-chromanones (IIIaIIId), 1-tetrahydronaphtol (V), and 1-tetralones (VI and VII). The molecular features and intermolecular interactions in crystal state have been discussed.  相似文献   

5.
Reactions of the fulvenes C5H4C(R 1 R 2) [(R 1 = CH2CH3, R 2 = CH3 (1); R 1 = R 2 = C2H5 (2); R 1, R 2 = (CH2)4 (3), R 1,R 2 = (CH2)5 (4)] with Mo(CO)6 in refluxing xylene gave the corresponding cyclopentadienyl dimolybdenum carbonyl complexes [(η5-C5H4CR1′R2′Mo(CO)3]2 [(R 1′ = CH2CH3, R 2′ = CH3 (5); R 1′ = R 2′ = C2H5 (6); R 1′, R 2′ = CH(CH2)3 (7); R 1′, R 2′ = CH(CH2)4 (8)], which were characterized by elemental analysis, IR and 1H NMR spectra. The molecular structures were determined by single-crystal X-ray diffraction. The results indicated the exocyclic double bond of the ligands 1 and 2 changed into a single bond and the exocyclic double bond of the ligands 3 and 4 underwent a double-bond isomerization process.  相似文献   

6.
Reaction of [Au(PPh3)2(tht)2](OSO2CF3)3 with RaaiR′ in CH2Cl2 medium following ligand addition leads to [Au(PPh3)2(RaaiR′)](OTf)3 [RaaiR′ = p-R–C6H4–N=N–C3H2–NN–1–R′, (1–3), abbreviated as N,N′-chelator, where N(imidazole) and N(azo) represent N and N′, respectively; R = H (a), Me (b), Cl (c) and R′ = Me (1), CH2CH3 (2), CH2Ph (3), PPh3 is triphenylphosphine, OSO2CF3 is the triflate anion, tht is tetrahydrothiophen]. The maximum molecular peak of the corresponding molecule is observed in the ESI mass spectrum. The 1H-nmr spectral measurements suggest methylene, –CH2–, in RaaiEt gives a complex AB type multiplet while in RaaiCH2Ph it shows AB type quartets. 13C-nmr spectrum suggests the molecular skeleton. In the 1H–1H COSY spectrum as well as contour peaks in the 1H–13C heteronuclear multiple-quantum coherence (HMQC) spectrum assign the solution structure. Electrochemistry assign ligand reduction part rather than metal oxidation.  相似文献   

7.
Alizadeh  Robabeh  Amani  Vahid 《Structural chemistry》2011,22(5):1153-1163
Lead(II) coordination polymer [Pb(5,5′-dmbpy)(μ-NO3)2] n (1) and mononuclear complex [Pb(6,6′-dmbpy)(NO3)2] (2) (where 5,5′-dmbpy is 5,5′-dimethyl-2,2′-bipyridine and 6,6′-dmbpy is 6,6′-dimethyl-2,2′-bipyridine) were synthesized from reaction of lead(II) nitrate with 5,5′-dmbpy and 6,6′-dmbpy, respectively. Both complexes were thoroughly characterized by elemental analysis, infrared, 1H and 13C NMR, UV–Vis, emission spectroscopy, as well as single-crystal X-ray diffraction. Polymer 1 possesses one-dimensional (1D) chain structure, whilst complex 2 exhibits a discrete complex which provide an extended chain parallel to the [001] direction, via weak intermolecular C–H···O hydrogen bonding. Coordination number of Pb2+ in 1 and 2 are 8 and 6, respectively, with the stereochemically active lone pair, resulting in the hemidirected geometry for both complexes. The nitrate anions exhibit a tridentate chelating/bridging mode in 1, and a bi-chelating mode in 2. The supramolecular features in these complexes are guided/influenced by weak directional intermolecular C–H···O hydrogen bonding (1 and 2) together with π–π and C–H···π (1) interactions. The luminescence studies of 1 and 2 confirmed that the position of methyl substituent on 2,2′-bipyridine rings has a profound effect on the fluorescence emissions.  相似文献   

8.
Three new Cd(II) complexes consisting of phenanthroline derivative and organic acid ligands, formulated as [Cd3(3-PIP)2(L1)6] (I), [Cd(3-PIP)(L2)] · H2O (II), and [Cd(3-PIP)(L3)] (III) (3-PIP = 2-(3-pyridyl)imidazo[4,5-f]-1,10-phenanthroline, HL1 = 3,5-dinitrobenzoic acid, H2L2 = oxalic acid, H2L3 = benzene-1,3-dicarboxylic acid), have been synthesized via the hydrothermal reaction and characterized by single-crystal X-ray diffraction, elemental analyses and FT-IR spectra. Complex I is a trinuclear structure. Complex II features a 1D zigzag chain. Complex III shows a twisted double chain of binuclear units sustained by double carboxylate bridges. Three complexes are further extended into 3D supramolecular frameworks by hydrogen bonding and π-π-stacking interactions. The structural differences among I–III show that the organic carboxylates have important effects on the structures. Furthermore, the supramolecular interactions are the critical factors in determining the final structures of the complexes. In addition, the thermal stabilities and luminescent properties of complexes I and II are also investigated.  相似文献   

9.
Reaction of [Pd(dppe)Cl2/Br2] with AgOTf in a dichloromethane medium followed by ligand addition led to [Pd(dppe)(OSO2CF3)2] and then [Pd(dppe)(RaaiR)](OSO2CF3)2 [RaaiR′ = p-R-C6H4-N=N-C3H2-NN-1-R′, (1–3), abbreviated as a N,N′-chelator, where N(imidazole) and N(azo) are represented by N and N′, respectively; R = H (a), Me (b), Cl (c) and R′ = Me (1), CH2CH3 (2), CH2Ph (3), OSO2CF3 is the triflate anion, dppe = 1,2-bis-(diphenylphosphinoethane)]. 31P “1H” NMR confirmed that due to the two phosphorus atom interaction in the azoimine symmetrical environment one sharp peak was formed. The 1H NMR spectral measurements suggest that azo-imine link with lot of phenyl protons in the aromatic region. 13C (1H) NMR spectrum, 1H, 1H COSY and 1H, 13C HMQC spectrum assign the solution structure and stereo-retentive conformation in each complex.  相似文献   

10.
ansa55′-[1,1′-(1-silacyclopent-3-ene-1,1-diyl)bis(indenyl)]} dichlorozirconium (1a,b) was synthesized. The crystal structure ofmeso-[(1,4-CH2CH=CHCH2)Si(C9H6)2ZrCl2] (1b) was established by X-ray diffraction analysis. Photoinduced interconversion of the racemic (1a) andmeso forms was studied under various conditions. The photostationary state (rac: meso=55∶45) was established rapidly when solutions ofansa-zirconocene were irradiated with visible light. Deceased Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2351–2356, November, 1998.  相似文献   

11.
Reaction of [Au(C6F5)(tht)2Cl](OTf) with RaaiR′ in CH2Cl2 medium leads to [Au(C6F5)(RaaiR′)Cl](OTf) [RaaiR′ = p-R–C6H4–N=N–C3H2–NN-1-R′, (1–3), abbreviated as N,N′-chelator, where N(imidazole) and N(azo) represent N and N′, respectively; R = H (a), Me (b), Cl (c) and R′ = Me (1), CH2CH3 (2), CH2Ph (3), tht is tetrahydrothiophen]. The maximum molecular peak of [Au(C6F5)(MeaaiMe)Cl] is observed at m/z 599.51 (100 %) in the FAB mass spectrum. Ir spectra of the complexes show –C=N– and –N=N– stretching near at 1590 and 1370 cm−1 and near at 1510, 955, 800 cm−1 due to the presence of pentafluorophenyl ring. The 1H-NMR spectral measurements suggest methylene, –CH2–, in RaaiEt gives a complex AB type multiplet while in RaaiCH2Ph shows AB type quartets. 13C-NMR spectrum of complexes confirm the molecular skeleton. In the 1H-1H-COSY spectrum as well as contour peaks in the 1H-13C HMQC spectrum for the present complexes, assign the solution structure and stereoretentive conformation. The electrochemistry gives the ligand reduction peaks.  相似文献   

12.
Reaction of [Ni(dppe)Cl2/Br2] with AgOTf in CH2Cl2 medium following ligand addition leads to [Ni(dppe)(OSO2CF3)2] and then [Ni(dppe)(RaaiR)](OSO2CF3)2 [RaaiR′ = p–R–C6H4–N=N–C3H2–NN-1–R′,(1–3), abbreviated as N,N′-chelator, where N(imidazole) and N(azo) represent N and N′, respectively; R = H (a), Me (b), Cl (c) and R′ = Me (1), CH2CH3 (2), CH2Ph (3), OSO2CF3 is the triflate anion]. 31P{1H}-NMR confirm that stable bis-chelated square planar Ni(II) azoimine–dppe complex formation with one sharp peaks. The 1H NMR spectral measurements suggest azoimine link is present with lot of phenyl protons in the aromatic region. Considering all the moities there are a lot of different carbon atoms in the molecule which gives many different peaks in the 13C(1H)-NMR spectrum. In the 1H-1H COSY spectrum in the present complexes and contour peaks in the 1H-13C-HMQC spectrum in the present complexes, assign the solution structure and stereoretentive conformation in each complexes.  相似文献   

13.
Ag+ assisted aquation of blue cis-trans-cis-RuCl2(RaaiR′)2 (4–6) leads to the synthesis of solvento species, blue-violet cis-trans-cis-[Ru(OH2)2(RaaiR′)2](ClO4)2 [Raai R′=p-R-C6H4 N=N–C3H2–NN–1–R′, (1–3), abbreviated as N,N′-chelator, where N(imidazole) and N(azo) represent N and N′, respectively; R = H (a), OMe (b), NO2 (c) and R′ = Me (1/4/7/10), CH2CH3 (2/5/8/11), CH2Ph (3/6/9/12)] that have been reacted with NO2in warm EtOH resulting in violet dinitro complexes of the type, Ru(NO2)2(RaaiR′)2 (7–9). The nitrite complexes are useful synthons of electrophilic nitrosyls, and on triturating the compounds, (7b–9b) with conc. HClO4 nitro-nitrosyl derivatives, [Ru(NO2)(NO)(OMeaaiR′)2](ClO4)2 (10b–12b) are isolated. The solution structure and stereoretentive transformation in each step have been established from 1H n.m.r. results. All the complexes exhibit strong MLCT transitions in the visible region. They are redox active and display one metal-centred oxidation and successive ligand-based reductions. The redox potentials of Ru(III)/Ru(II) (E1/2M) of (10b–12b) are anodically shifted by ∼ ∼0.2 V as compared to those of dinitro precursors, (7b–9b). The ν(NO) >1900 cm−1 strongly suggests the presence of linear Ru–NO bonding. The electrophilic behaviour of metal bound nitrosyl has been proved in one case (12b) by reacting with a bicyclic ketone, camphor, containing an active methylene group and an arylhydrazone with an active methine group, and the heteroleptic tris chelates thus formed have been characterised.  相似文献   

14.
Diacetylplatinum(II) complexes [Pt(COMe)2(N^N)] (N^N = bpy, 3a; 4,4′-t-Bu2-bpy, 3b) were found to undergo oxidative addition reactions with organyl halides. The reaction of 3a with methyl iodide and propargyl bromide led to the formation of the cis addition products (OC-6-34)-[Pt(COMe)2(R)X(bpy)] (R = Me, X = I, 4a; CH2C≡CH, X = Br, 4k). Analogous reactions of 3a with ethyl iodide, benzyl bromide, and substituted benzyl bromides, 3-(bromomethyl)pyridine, 2-(bromomethyl)thiophene, allyl bromide, and cyclohex-2-enyl bromide led to exclusive formation of the trans addition products (OC-6-43)-[Pt(COMe)2(R)X(bpy)] (X = I, R = Et, 4b; X = Br, R = CH2C6H5, 4c; CH2C6H4(o-Br), 4d; CH2C6H4(p-COOH), 4e; CH2-3-py (3-pyridylmethyl), 4f; CH2-2-tp (2-thiophenylmethyl), 4g; CH2CH=CH2, 4h; c-hex-2-enyl (cyclohex-2-enyl), 4i). All complexes 4 were characterized by microanalysis, 1H and 13C NMR and IR spectroscopy. Additionally, complexes 4a, 4f, and 4g were characterized by single-crystal X-ray diffraction analyses. Reactions of 3a and 3b with o-, m- and p-bis(bromomethyl)benzene, respectively, led to the formation of dinuclear platinum(IV) complexes [{Pt(COMe)2Br(N^N)}2-{μ-(CH2)2C6H4}] (5). These complexes were characterized by microanalysis, IR spectroscopy, and depending on their solubility by 1H and 13C NMR spectroscopy, too. A single-crystal X-ray diffraction analysis of complex [{Pt(COMe)2Br(bpy)}2{μ-m-(CH2)2C6H4}] (5b) confirmed its dinuclear composition. The solid-state structures of 4a, 4f, 4g, and 5b are discussed in terms of C–H···O and O–H···O hydrogen bonds as well as π–π stacking between aromatic rings.  相似文献   

15.
Two new copper(II) complexes, [Cu(p-FBA)2(2,2′-bpy)]·(H2O) (1) and [Cu(p-FBA)(2,2′-bpy)2]·(p-FBA)2 (2) {p-FBA = p-fluorobenzoic acid, 2,2′-bpy = 2,2′-bipyridine} have been obtained from an identical starting mixture using temperature as the only independent variable and characterized by X-ray single crystal diffraction as well as with infrared spectroscopy, elemental analysis, and thermogravimetric analysis. The results reveal that 1 has 1D infinite chain structure formed by O–H···O hydrogen bonds, while 2 features a 0D structure. Additionally, there exist C–H···O hydrogen bonds and π–π stacking interactions in 1, forming 2D supramolecular structure. Furthermore, density functional theory (DFT) calculations of the structures, stabilities, orbital energies, composition characteristics of some frontier molecular orbitals and Mulliken charge distributions of the [Cu(p-FBA)2(2,2′-bpy)] of 1 and [Cu(p-FBA)(2,2′-bpy)2]+ cation of 2 were performed by means of Gaussian 03W package and taking B3LYP/lanl2dz basis set.  相似文献   

16.
2-Methyl-1,1-dicarboxylato-1-telluracyclopentanes C4H7(CH3)Te(OCOR)2 (R=OCO, C6H5, 4-NO2C6H4, 3,5-(NO2)2C6H3, C6H5CH=CH, 4-OCH3C6H4) (27) were synthesised from the reactions of 2-methyl-1,1-diiodo-1-telluracyclopentane (1) and corresponding silver salts and characterised by (IR &1HNMR) spectroscopy. The structures of C4H7(CH3)TeI2 (1), C4H7(CH3)Te(OCOC6H5)2 (3) and C4H7(CH3)Te(4-NO2C6H4OCO)2 (4) were established by single crystal X-ray diffraction studies. The structures of 1, 3 & 4 (the immediate environment about tellurium is that of distorted trigonal bipyramidal geometry with a stereochemically active electron lone pair) are described in the context of their ability to generate intermolecular I···I, Te···I, Te···O secondary bonds; C(sp3)–H···O and C(sp2)–H···O hydrogen bonds leading to the formation of polymeric, tetrameric and trimeric supramolecular assemblies. The modification of supramolecular assembly present in the precursor 1 is demonstrated and the cooperative participation of C(sp2)–H···O & C(sp3)–H···O hydrogen bonds, probably, helpful in strengthening the supramolecular assembly is discussed.
R. J. ButcherEmail:
  相似文献   

17.

Abstract  

Based on the polydentate ligand 3,5-bis(3-pyridyl)-1H-1,2,4-triazole (3,3′-Hbpt), three coordination compounds [Zn(3,3′-Hbpt)(ip)]·2H2O (1), [Zn(3,3′-Hbpt)(5-NO2-ip)]·H2O (2), and [Zn(3,3′-Hbpt)2(H2pm)(H2O)2]·2H2O (3) have been hydrothermally constructed with H2ip, 5-NO2-H2ip and H4pm as auxiliary ligands (H2ip = isophthalic acid, 5-NO2-H2ip = 5-NO2-isophthalic acid, H4pm = pyromellitic acid). Structural analysis reveals that Zn(II) ions serve as four-coordinated, five-coordinated, and six-coordinated connectors in 13, respectively, while 3,3′-Hbpt adopts μ-Npy and Npy coordination modes in two typical conformations in these target coordination compounds. Dependently the applied ligand, compounds 13 exhibit either 1D channel, cage or chain structures, respectively. In addition, the luminescence properties of 13 have been investigated in the solid state at room temperature.  相似文献   

18.
New mixed-ligand copper(I) complexes, [Cu(Phca2en)(PPh3)X], [Phca2en = N,N′-bis(β-phenylci-nnamaldehyde)-1,2-diiminoethane and X=Cl (1), Br (2), I (3), NCS (4), N3 (5)] have been synthesized and characterized by various techniques. 1H and 13C-NMR and IR spectral data of these copper(I) complexes are compared with the free ligand to elucidate some structural features. The structures of [Cu(Phca2en)(PPh3)Br] (2) and [Cu(Phca2en)(PPh3)I] (3) have been determined from single-crystal data showing that the coordination geometry around copper atom is a distorted tetrahedron. Furthermore, these Cu(I) complexes exhibit supramolecular motifs of the type multiple phenyl embraces resulting from attractive interactions between phenyl rings of PPh3 moieties. The presence of the C–H…Cu weak intramolecular hydrogen bonds, due to the trapping of C–H bonds in the vicinity of the metal atoms, is also reported.  相似文献   

19.
We have reported herein the synthesis of three new Cu(II) complexes of tri- and tetradentate Schiff base ligands containing N3 or N4 donor set along with terminal NNN or SCN ligands: [L1Cu(NCS)]ClO4 (1), [L2Cu(NCS)2] (2) and [L3Cu(NNN)]ClO4 (3) [L1 = NC5H4C(CH3)=N(CH2)3N=C(CH3)C5H4N, L2= Me2N–(CH2)3–N=C(CH3)C5H4N and L3 = NC5H4CH=N–(CH2)4–N=CHC5H4N]. The complexes have been systematically characterised by elemental, spectroscopic and electrochemical techniques. Antimicrobial activities of the Schiff base ligands and their metal complexes have been studied using the disc diffusion method on the strains of Candida tropicalis and Bacillus megaterium. Structures of all the complexes have been unequivocally established from single crystal X-ray diffraction analyses that show the monomeric units containing a five-coordinated copper center in highly distorted square pyramidal geometry with thiocyanate or azide anion coordinated as terminal ligand. The complexes 1 and 3 crystallise in monoclinic (P21/c) and 2 in triclinic (P-1) space group, respectively.  相似文献   

20.
The reaction of [Ni(dppa)(Cl)2] or [Ni(dppa)(Br)2] with AgOTf gives [Ni(dppa)(OTf)2], which then form [Ni(dppa)(RaaiR)](OSO2CF3)2 under the action of arylazoimidazole(RaaiR) in a dichloromethane medium [RaaiR′ = p-R-C6H4-N=N-C3H2-NN-1-R′, (I–III), abbreviated as N,N′-chelating agent, where N(imidazole) and N(azo) represent N and N’, respectively; R = H (a), Me (b), Cl (c) and R′ = Me (I), CH2CH3 (II), CH2Ph (III), OSO2CF3 is the triflate anion]. The 1H NMR spectral measurements suggest that a bound azoimine is responsible for a number of signals of phenyl protons in the aromatic region. The molecules of the complexes contain a number of different carbon atoms which gives a number of different peaks in the 13C (1H) NMR spectrum. The text was submitted by the author in English. The text was submitted by the author in English.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号