首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A concise survey of formulation methods of geometric and material non-linearity problems is given. The survey is concerned mainly with the differences between updated Lagrangian and Eulerian formulations, and with the specific nature and basic characteristics of each. The underlying mechanics and the spatial discretisation for an Eulerian formulation are discussed. An Eulerian formulation with the final equilibrium equations suitable for static and/or dynamic structural analysis is presented. Explicit forms for stiffness matrices and load vectors are given. Differences between the present formulation, the existing Lagrangian formulation, the updated Langrangian formulation and other attempted Eulerian formulations are discussed within the framework of a consistent classification of formulation methods.  相似文献   

2.
The constructions made of bars and plates with holes, openings and bulges of various forms are widely used in modern industry. By loading these structural elements with different efforts, there appears concentration (accumulation) of stress whose values sometimes exceeds the admissible one. The durability of the given element is defined according to the quantity of these stresses. Since the failure of details and construction itself begins from the place where the stress concentration has the greatest value.

Therefore the exact determination of stress distribution in details (bars, plates, beams) is of great scientific and practical interest and is one of the important problems of the solid fracture.

Compound details (when the nucleus of different material is soldered to the hole) are often used to decrease the stress concentration.

In the present paper, we study a stress–strain state of polygonal plate weakened by a central elliptic hole with two linear cracks info which a rigid nucleus (elliptic cylinder with two linear bulges) of different material was put in (soldered) without preload.

The problem is solved by a complex variable functions theory stated in papers [Theory of Elasticity, Higher School, Moscow, 1976, p. 276; Plane Problem of Elasticity Theory of Plates with Holes, Cuts and Inclusions, Publishing House Highest School, Kiev, 1975, p. 228; Bidimensional Problem of Elasticity Theory, Stroyizdat, Moscow, 1991, p. 352; Science, Moscow (1996) 708; MSB AH USSR OTH 9 (1948) 1371].

Kolosov–Mushkelishvili complex potential (z) and ψ(z) satisfying the definite boundary conditions are sought in the form of sums of functional series.

After making several strict mathematical transformations, the problem is reduced to the solution of a system of linear algebraic equations with respect to the coefficients of expansions of functions (z) and ψ(z).

Determining the values of (z) and ψ(z), we can find the stress components σr, σθ and τrθ at any point of cross-section of the plate and nucleus on the basis of the known formulae. The obtained solution is illustrated by numerical example.

Changing the parameters A1, m1, e, A2, and m2 we can get the various contour plates.

For example, if we assume m1=0, A1=r, then the internal contour of L1 becomes the circle of radius r with two rectilinear cracks (for the nucleus––a rectilinear bulges).

Further, if we assume a small semi-axis of the ellipse b1 to be equal to zero (b1=0), then a linear crack becomes the internal contour of L1 (and the nucleus becomes the linear rigid inclusion made of other material). For m2=0; A2=R, the external contour L2 turns into the circle of radius R.

The obtained method of solution may be applied and in other similar problems of elasticity theory; tension of compound polygonal plate, torsion and bending of compound prismatic beams, etc.  相似文献   


3.
Asymptotic soliton trains arising from a ‘large and smooth’ enough initial pulse are investigated by the use of the quasiclassical quantization method for the case of Kaup–Boussinesq shallow water equations. The parameter varying along the soliton train is determined by the Bohr–Sommerfeld quantization rule which generalizes the usual rule to the case of ‘two potentials’ h0(x) and u0(x) representing initial distributions of height and velocity, respectively. The influence of the initial velocity u0(x) on the asymptotic stage of the evolution is determined. Excellent agreement of numerical solutions of the Kaup–Boussinesq equations with predictions of the asymptotic theory is found.  相似文献   

4.
加权残值法在钢筋混凝土拱桥非线性有限元分析中的应用   总被引:2,自引:0,他引:2  
本文用圆弧梁离散拱肋;用圆柱拖带坐标、三次位移插值函数及平截面假定来描述单元位形;用加权残值配点法来消除曲梁单元的剪力与膜力闭锁。按基于连续介质力学的U.L.列式建立单元增量平衡方程,以考虑几何非线性。假定钢筋为理想弹塑性材料。按三参数各向同性强化塑性模型,建立混凝土的弹塑性本构矩阵。将拱单元分段分块,根据钢筋及砼的本构特性,建立拱单元及梁段单元的弹塑性刚度矩阵,以考虑材料非线性。用编制的程序对两座模型拱桥进行计算,计算结果与模型测试结果接近  相似文献   

5.
In this paper an implicit method for frictional contact, impact and rolling is suggested. A nonclassical formulation of a two-dimensional hyperelastic body unilaterally constrained to rigid supports is proposed by following the ideas of Moreau and Jean. A total Lagrangian formulation of the system is given. The elastic properties are defined by coupling the second Piola–Kirchhoff stress to the Green–Lagrange strain via the Kirchhoff–St. Venant law. The equation of motion is written in the spirit of Moreau by using the mean value impulses introduced by Jean. The mean value impulses appear explicitly in the equation of motion. In such manner the treatment of nonconstant kinematic transformation matrices becomes straightforward. The rigid supports are described by smooth functions. By utilizing these functions and the mean value impulses, new contact/impact laws of Signorini and Coulomb type are formulated. The governing equations are solved by a nonsmooth Newton method. This is performed by following the augmented Lagrangian approach and deriving the consistent stiffness matrix as well as the contact stiffness matrices. Three two-dimensional examples are solved by the method: a contact problem, an impact problem and a rolling contact problem.  相似文献   

6.
The lag-entrainment predictive scheme developed by Green et al. has been modified to include the pressure-gradient parameter Π1. In the original model suggested by Green et al. the mass-flow shape factor H1 is related to the common shape factor H, H1 = f(H). In the present model H1 is related to H, Reynolds number based on the local momentum thickness θ, and Π1; thus H1 = f(H, Reθ, Π1). The modified formula for H1, is introduced into the original lag-entrainment integral model. Calculations are made to examine the present model for the predictions of the development of boundary layers approaching separation studied experimentally by the authors. Slightly improved predictions are obtained using the model developed by El Telbany et al. However, the present model proved to give an improved representation of the development of wall shear stress in cases the two-equation turbulence model proved to be unsuccessful.  相似文献   

7.
The evolution of freestream turbulence under the combined action of linear shear and stable linear temperature profile is investigated. The experiment is carried out in a small, open circuit, low-speed test cell that uses air as working fluid. The temperature gradient formed at the entrance to the test section by means of an array of 24 horizontal, differentially heated elements is varied to get a maximum Brunt-Vaisala frequency No[=({g/Tm}{∂T/∂y})1/2] of 3.1−1. Linear velocity profiles are produced using screens of variable mesh size. The Reynolds number ReM based on centre-line velocity and mesh size is varied from 80 to 175. Isothermal studies are carried out in four different experiments with varying velocity gradients. The effect of inlet turbulence level on growth of turbulence is studied in these flows by keeping the shear parameter Sh (=(x/u)(∂u/∂y)) constant. The range of shear parameters considered is 2.5–7.0. Shear and stratification combined produce a maximum gradient Richardson number Rig (= No2/(∂u/∂y)2) of 0.0145. Results have been presented in terms of evolution of variance of velocity fluctuations, Reynolds shear stress and temperature fluctuations. Measurements show the following: In isothermal flows the growth rate of turbulence quantities depends on both shear parameter and inlet turbulence level. There are distinct stages in the evolution of the flow and that can be identified by the power-law exponent of growth of turbulence. Shear is seen to promote the growth of turbulence and accelerate it towards a fully developed equilibrium state. Stratification initially suppresses the growth of turbulence and, hence, enhances the degree of underdevelopment. Under these conditions shear becomes active and subsequently enhances the growth rate of turbulence quantities.  相似文献   

8.
The existence and asymptotic behavior as ε → 0+ of periodic, almost periodic, and bounded solutions of the differential system x = f(t, x, y, ε), Ωy′ = g(t, x, y, ε), are considered where x, f; are n-vectors, y, g are m-vectors and Ω = diag{εh1}…, εhm for integral hi, h1 h2 …, hm. The principal tools are a lemma of Nagumo which allows the construction of appropriate upper and lower solutions and the asymptotic theory of singularly perturbed linear differential systems.  相似文献   

9.
本文以三维连续体的虚功增量方程为基础,采用平动、转角位移分别插值的方法,导出了梁结构大位移、大转动问题内力分析的UL法。本文考虑了轴向、剪切和弯曲效应,提出了新的几何刚度矩阵。算例表明,依本文方法编制的程序具有分析结构强几何非线性行为的能力;在满足本文位移假定(即每次加载增量中转角增量是小量)的条件下,可以描述任意大角度的刚体转动。  相似文献   

10.
???????????????????????????о?   总被引:1,自引:0,他引:1  
唐斌 《力学与实践》2009,31(4):32-36
针对连续Bernoulli-Euler和Timoshenko梁单元的动态刚度矩阵,分析了在使用连续梁单元 进行结构动态特性分析中的数值问题. 基于连续梁单元的运动方程,导出了连续 Bernoulli-Euler和Timoshenko梁单元的动态刚度矩阵. 分析了影响动态刚度矩阵中双曲函 数自变量的各个独立变量及其产生的影响,并给出了初估连续梁单元合理长度的方法. 使用 单一连续Bernoulli-Euler和Timoshenko梁单元的动态刚度矩阵分别进行了悬臂梁频响曲线 的数值求解. 研究表明,在合理选择连续梁单元的长度时,大多数工程结构的动态特性分析 中都不会产生数值问题.  相似文献   

11.
Non-linear dynamic buckling of autonomous non-dissipative N-degree-of-freedom systems whose static instability is governed either by a limit point or by an unstable symmetric bifurcation is thoroughly discussed using energy and geometric considerations. Characteristic distances associated with the geometry of the zero level total potential energy “hypersurface” in connection with total energy-balance equation lead to dynamic (global) instability criteria. These criteria allow the determination of “exact” dynamic buckling loads without solving the non-linear initial-value problem. The reliability and efficiency of the proposed geometric approach is demonstrated via several dynamic buckling analyses of 3-degree-of-freedom systems which subsequently are compared with corresponding numerical analyses based on the Verner–Runge–Kutta scheme.  相似文献   

12.
This paper reports numerical results of two-dimensional double-diffusive natural convection in a square porous cavity partially heated from below while its upper surface is cooled at a constant temperature. The vertical walls of the porous matrix are subjected to a horizontal concentration gradient. The parameters governing the problem are the thermal Rayleigh number (Ra=100 and 200), the Lewis number (Le=0.1, 1 and 10), the buoyancy ratio (−10N10) and the relative position of the heating element with respect to the vertical centerline of the cavity (δ=0 and 0.5). The effect of the governing parameters on fluid characteristics is analyzed. The multiplicity of solutions is explored and the existence of asymmetric bicellular flow is proved when the heated element is shifted towards a vertical boundary (δ=0.5). The solutal buoyancy forces induced by horizontal concentration gradient lead to the elimination of the multiplicity of solutions obtained in pure thermal convection when N reaches some threshold value which depends on Le and Ra.  相似文献   

13.
The first-order shear deformation moderate rotation shell theory of Schmidt and Reddy [R. Schmidt and J. N. Reddy, J. Appl. Mech. 55, 611–617 (1988)] is used as a basis for the development of finite element models for the analysis of the static, geometrically non-linear response of anisotropic and laminated structures. The incremental, total Lagrangian formulation of the theory is developed, and numerical solutions are obtained by using the isoparametric Lagrangian 9-node and Serendipity 8-node shell finite elements. Various integration schemes (full, selective reduced, and uniformly reduced integration) are applied in order to detect and to overcome the effects of shear and membrane locking on the predicted structural response. A number of sample problems of isotropic, orthotropic, and multi-layered structures are presented to show the accuracy of the present theory. The von Kármán-type first-order shear deformation shell theory and continuum 2D theory are used for comparative analyses.  相似文献   

14.
以三维连续体的虚功增量方程为基础,采用平动、转角位移分别插值的方法,导出了空间Timoshenko梁大位移、大转动问题内力分析的UL法(UpdatedLagrangiai1Formulation)。本文考虑了轴向、剪切、弯曲和扭转效应,提出了新的几何刚度矩阵,并建立了描述大转动规律的坐标转换矩阵。算例表明,依本文方法编制的程序具有分析结构强几何非线性行为的能力;在满足本文假定(即每次加载增量中转角增量是小量)的条件下,可以描述任意大角度的刚体转动。  相似文献   

15.
对于大转动、大变形柔性体的刚柔耦合动力学问题,基于李群SE(3)局部标架(local frame formulation,LFF)的建模方法能够规避刚体运动带来的几何非线性问题,离散数值模型中广义质量矩阵与切线刚度矩阵满足刚体变换的不变性,可明显地提高柔性多体系统动力学问题的计算效率.有限元方法中,闭锁问题是导致单元收...  相似文献   

16.
In this paper, pressure spectra have been derived from the authors’ model (Eur. J. Mech., B/Fluids 12 (1) (1993) 31–42) developed by means of rapid distortion theory (RDT) of homogeneous low Reynolds number turbulent shear flow subjected to weak rotation. The combined effects of uniform shear dU1/dx2 and weak rotation Ω3 on the evolution of pressure spectra have been examined in terms of the rotation number 2Ω3/(dU1/dx2). It is found that the system rotation exhibits the opposite effect on the pressure field as compared with the influence of rotation on the velocity fluctuations.  相似文献   

17.
钢管混凝土柱-钢梁节点的力学性能分析   总被引:1,自引:0,他引:1  
基于弹塑性有限元理论建立了钢管混凝土柱-钢梁节点荷载-位移全过程非线性有限元模型,在单元分析中采用改进的AUL表述推导得到梁柱单元刚度矩阵方程,同时考虑了材料的物理非线性和单元的几何非线性,并编制了非线性有限元程序NLFEACFST。采用该模型对相关研究者和作者进行的节点试验进行了分析,理论计算结果与试验结果比较表明,该模型具有很好的适用性和精度。在理论分析模型得到试验结果验证的基础上,对典型的中柱节点进行了荷载-位移全过程非线性特性分析,并对影响节点承载力和荷载-位移骨架曲线的因素进行了参数分析,为进一步从理论研究钢管混凝土框架结构的力学性能创造了条件。  相似文献   

18.
Turbulence modulation due to its interaction with dispersed solid particles in a downward fully developed channel flow was studied. The Eulerian framework was used for the gas-phase, whereas the Lagrangian approach was used for the particle-phase. The steady-state equations of conservation of mass and momentum were used for the gas-phase, and the effect of turbulence on the flow-field was included via the standard kε model. The particle equation of motion included the drag, the Saffman lift and the gravity forces. Turbulence dispersion effect on the particles was simulated as a continuous Gaussian random field. The effects of particles on the flow were modeled by appropriate source terms in the momentum, k and ε equations. Particle–particle collisions and particle–wall collisions were accounted for in these simulations. Gas-phase velocities and turbulence kinetic energy in the presence of 2–100% mass loadings of two particle classes (50 μm glass and 70 μm copper) were evaluated, and the results were compared with the available experimental data and earlier numerical results. The simulation results showed that when the inter-particle collisions were important and was included in the computational model, the fluid turbulence was attenuated. The level of turbulence attenuation increased with particle mass loading, particle Stokes number, and the distance from the wall. When the inter-particle collisions were negligible and/or was neglected in the model, the fluid turbulence was augmented for the range of particle sizes considered.  相似文献   

19.
Wave propagation with tunneling in a highly discontinuous layered medium   总被引:3,自引:0,他引:3  
An impulsive plane wave traverses a stratified medium consisting of a large number N of homogeneous isotropic perfectly elastic layers. The directly transmitted wave is greatly reduced by the cumulative effect of scattering loss at each of the many interfaces. However, close to the arrival of the direct wave is a broad pulse, arising from multiple scattering; this pulse does not decay as rapidly as the direct wave and ultimately appears to diffuse about a moving center. The latter process, which is determined by the medium statistics, leads to time delays, effective anisotropy, and apparent attenuation.

The present work may be regarded as an extension of that described by Burridge, White and Papanicolaou (1988) and Burridge and Chang (1989) to allow for tunneling P waves for S-wave incidence beyond the critical angle.

When the reflection coefficients at the interfaces are scaled as 1/√N while N → ∞, and when time is measured in units of vertical travel time across an average layer, numerical solutions of the exact problem show that the shape of the broad transmitted pulse approaches the limiting form given as the solution of a certain integrodifferential equation in accordance with our asymptotic theory.  相似文献   


20.
We study the dynamics of a massless particle in an annular configuration of N bodies, N − 1 of which have equal masses m and are located in equal distances on a fictitious circle and one has mass βm and is located at the center of the circle. Our interest is focused on the bifurcation points from planar to three-dimensional families of symmetric periodic orbits in the above problem. We study numerically the evolution of these bifurcation points with respect to the variation of the mass parameter β. In particular we investigate the continuous evolution of bifurcation points for values of β from 2 up to 1000. The two distinct cases of the system’s behavior at β = 2 and 1000 are examined comparatively and various conclusions are drawn regarding the overall dynamical evolution of the three-dimensional system as the relative mass of the central body grows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号