首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
金纳米棒状微粒的胶囊模型及吸收光谱   总被引:2,自引:1,他引:1  
杨杨  颜丙海  王永昌 《光子学报》2005,34(3):375-378
提出了金纳米棒状微粒的胶囊模型,用Waterman发展的T矩阵方法计算了金纳米棒状微粒的吸收光谱.计算谱和实验谱基本符合,520 nm左右处的吸收峰对应于金纳米棒的横向表面等离体子共振(横模),长波长处的吸收峰对应于金纳米棒的纵向表面等离体子共振(纵模).随着金纳米棒纵横比的增加,纵模吸收峰表现出显著的红移,横模吸收峰则微弱地蓝移.此外,计算结果表明,金纳米棒状微粒外部介质的介电常数必须随着金纳米棒纵横比的增大非线性地减小.  相似文献   

2.
银纳米棒光学性质的离散偶极近似计算   总被引:1,自引:0,他引:1  
利用离散偶极近似 (Discretedipoleapproximation ,简称DDA)的方法 ,从理论上对粒子的形状、尺寸及周围介质等因素对银纳米粒子 ,特别是银纳米棒的光学性质的影响进行了较系统的研究 .计算表明 ,置于空气中的棒状银纳米粒子的光学性质与其形状密切相关 ,纵向表面等离子体共振吸收峰的位置随纳米棒长径比的增加呈现线性红移关系 .给出了空气中银纳米棒纵向表面等离子体共振吸收峰的位置随长径比变化的DDA拟合公式 .如果将金属纳米粒子置于折射率更高的介电环境中 ,其纵向等离子体共振吸收峰的位置进一步呈现线性红移关系 .合成的银纳米粒子的TEM图像及相关的UV VIS消光光谱显示DDA计算结果与实验值相当一致 .DDA算法与Mie′s理论在计算球状银纳米粒子的消光系数时给出很接近的结果 ,这表明用DDA的方法来分析银的光学性质是准确可靠的 ;而DDA算法对银纳米棒消光特性的成功拟合则表明 ,该算法相对Gans′理论而言 ,在研究纳米粒子的光学性质时具有更广的适用性及更高的准确性 .  相似文献   

3.
In this study, monodisperse bimetallic nanorods with gold (Au) nanorod core and silver (Ag) shell (Au@AgNRs) were synthesized through seed‐mediated growth process by reduction of AgNO3 using Au nanorods with narrow size and shape distribution as seeds. With increasing the used amount of AgNO3, the Ag shell thickness of their lateral facets is raised faster than that of their two tips, leading to a decrease of their aspect ratios. Four plasmon bands are observable on the extinction spectra of Au@AgNRs, which are attributed to the longitudinal dipolar plasmon mode, transverse dipolar plasmon mode, and octupolar plasmon mode of the core‐shell structured bimetallic nanorods, respectively. As their Ag shell thickness increases, their longitudinal plasmon band blue‐shifts notably with the transverse plasmon band blue‐shifting and the two octupolar plasmon bands red‐shifting slightly, due to the decrease of their aspect ratios and enhancement of Ag plasmon resonance contribution. When used as surface‐enhanced Raman scattering (SERS) substrate for probing minute amounts of 4‐mercaptobenzoic acid in aqueous solution, Au@AgNRs have much stronger SERS activity than Au nanorods, and the obtained Raman signals are highly reproducible arising from their excellent monodispersity. Their SERS activity is remarkably increased with their Ag shell thickness thanks to the enhancing surface electric field and the chemical enhancement associated with electronic ligand effect. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Gold nanorods with different aspect ratios are prepared in micells using a seeded growth method. Their extinction spectra are observed with an UV-visible spectrophotometer and analysed theoretically. It is known that there are two plasmon resonance peaks for gold nanorod corresponding to transverse and longitudinal plasmon resonance respectively. Moreover, the longitudinal plasmon resonance peak shifts to long wavelength when we increase the aspect ratio determined from TEM. Especially, we model the extinction spectrum using Gans' theory and compare it with our experimental result. Considering the aspect radios distribution of gold nanorods, it is found that longitudinal plasmon resonance peak will be wider than the nanorods with single aspect ratio, which is consistent with our experimental result. In addition, the effect of dielectric constant of surrounding medium is considered.  相似文献   

5.
We propose methods for creating spherical gold particles of submicron size and silver rod-like particles with transverse dimensions of ~10 nm and an aspect ratio of 1: 10. Factors determining the frequency of plasmon resonances are considered, reagents are selected, and their ratios for obtaining prolate silver particles are determined. An optimal concentration of the surfactant is determined for creating most elongated silver particles. A shift of the plasmon absorption toward the near-IR range of the spectrum is obtained.  相似文献   

6.
Gold nanorods (AuNRs) are prepared through seeded growth approach. Synthesis parameters of the amount of cetyltrimethylammonium bromide (CTAB), and concentration of ascorbic acid (AA) were studied. We were aiming for an aspect ratio of 3 which could be achieved by a nanorod feature in the range of 45 nm length and 15 nm width. The absorption spectra are observed with an UV–visible NIR spectrophotometer and analysed theoretically. It is known that there are two plasmon resonance peaks for gold nanorod corresponding to transverse surface plasmon resonance (TSPR) and longitudinal surface plasmon resonance (LSPR), respectively. It is found that as the concentration of CTAB increases, the yield of NRs increases. As the concentration of AA increased from 0.05 to 0.2 M, LSP shifts to longer wavelength but upon further increasing the concentration, LSP shifts back to shorter wavelength. A linear relationship between LSPR wavelength and surrounding medium dielectric constant is obtained, which is in good agreement with the theoretical results.  相似文献   

7.
We report on the optical absorption properties of as prepared gold naoparticles of different shapes and sizes measured by photoacoustic (PA) method. The gold nanoparticles of two different shapes (dots, rods) have been prepared using the seed mediated growth method. The shape and the size of these different nanoparticles were determined by STM measurements. PA spectra show the splitting of the surface plasmon resonance (SPR) into two modes (transverse and longitudinal) in case of gold nanorods. The increase in the aspect ratio of the nanorods leads to clear redshifts of the longitudinal SPR. These shifts were used to determine the dielectric constant of the surrounding medium and its variation with the aspect ratios.  相似文献   

8.
刘丹丹  张红 《中国物理 B》2011,20(9):97105-097105
We report theoretical studies on the plasmon resonances in linear Au atomic chains by using ab initio time-dependent density functional theory. The dipole responses are investigated each as a function of chain length. They converge into a single resonance in the longitudinal mode but split into two transverse modes. As the chain length increases, the longitudinal plasmon mode is redshifted in energy while the transverse modes shift in the opposite direction (blueshifts). In addition, the energy gap between the two transverse modes reduces with chain length increasing. We find that there are unique characteristics, different from those of other metallic chains. These characteristics are crucial to atomic-scale engineering of single-molecule sensing, optical spectroscopy, and so on.  相似文献   

9.
Abstract

A new seedless wet chemistry synthesis of gold nanorods by using hydrogen peroxide as the weak reducing agent is reported. A reduced concentration of hexadecyltrimethylammonium bromide is used in our experiment, and the synthesized gold nanorods exhibit tunable longitudinal surface plasmon resonance peaks ranging from 725 to 945?nm. The influence on gold nanorods growth by adjusting the amounts of sodium hydroxide, silver nitrate, sodium borohydride, and hexadecyltrimethylammonium bromide were investigated by the visible-near infrared spectroscopy. Under the proper experimental parameters, the longitudinal surface plasmon resonance peaks can be tuned by varying the hydrogen peroxide amounts. Furthermore, it can be seen that the redshift of the longitudinal absorption peak of the prepared gold nanorods with increasing hydrogen peroxide amount is consistent with the increase tendency of the length-to-width aspect ratio obtained from the transmission electron microscopy images. The method provides a facile pathway to prepare gold nanorods with tunable longitudinal surface plasmon resonance peaks, which have potential applications in biomedicine and nanophotonics.  相似文献   

10.
We reported in this work that light absorption can be significantly enhanced in an a-Si thin film solar cell with a nano binary metallic grating patterned on the bottom side. The enhancement is mainly due to combination of several kinds of optical modes. Cavity mode, at the transverse and longitudinal cavities and surface plasmon mode, propagating along the interface of silicon and silver are the main modes contributing to the enhancement. Some key parameters including grating period, width, height and active layer thickness are optimized. The integrated absorption rate of the optimized system reaches 76.55 % for the wavelength range from 300 to 950 nm under AM1.5G spectrum.  相似文献   

11.
采用等离子体活化技术制备了一种新型Ni/γ-Al2O3催化剂用于CO2重整CH4反应. 等离子体强化制备的催化剂表现出较高的反应活性和较好的抗积碳能力. 为了达到相同CH4转化率,常规焙烧的催化剂需要比等离子体处理的催化剂高出50 °C 的反应温度. 反应结束后,等离子体处理催化剂的失活率仅为1.7%,而常规催化剂上的失活率为15.2%。通过对催化剂进行BET、H2-TPR、XRD、CO2-TPD和TG等表征分析,结果表明等离子体增强制备方法使催化剂的平均孔直径减小,比表面积增加;催化剂的还原性,镍物种的分散度和催化剂对CO2的吸附量都有显著的提高.  相似文献   

12.
《Physics letters. A》2005,339(6):466-471
The dependence of full width at half maximum (FWHM) of the absorption peak in gold nanorods was investigated as a function of aspect ratio. Numerical calculations based on Drude model and quasi-static theory indicated that, the FWHM of longitudinal absorption peak is wider than that of transverse mode. Further more, with the increasing aspect ratio, the FWHM of longer wavelength absorption peak increasing in a nonlinear way, which is in agreement with the experimental results.  相似文献   

13.
Ultra-thin anodic aluminum oxide membranes were prepared and served as deposition masks for fabrication of uniformly sized Ag nanodots with different aspect ratios on glass substrates. The surface plasmon resonance (SPR) properties of the supported Ag nanodots were investigated and compared with the predictions of the generalized Maxwell–Garnett theory. By modeling the nanodots as spheroids without adjusting their real geometrical parameters input to the calculation, the resulting theoretical SPR wavelengths are in good agreement with measured extinction peaks. The discrepancy between the theoretical and experimental plasmon resonance peak maxima is within 10 nm for the nanodots with an aspect ratio of less than 1.5. Although this wavelength discrepancy becomes large as the aspect ratio is increased, it is kept at approximately 35 nm for the nanodots with an aspect ratio of 2.44.  相似文献   

14.
The dependence of the enhancement of the Raman scattering on the size of a dielectric column is measured in structures with the spatial modulation of the height and lateral sizes of the dielectric coated with a thick metal layer (10–80 nm). It is established that, in the case of a thick metal coating (silver, gold, and copper coatings are used) at dimensions of the dielectric column close to the laser pump wavelength, considerable enhancement of the Raman signal oscillating upon the variation of the geometrical dimensions of the structure is observed. It is shown that the observed resonance enhancement of the Raman signal is associated with the transformation of the electromagnetic radiation into localized plasmon–polariton modes, and the efficiency of such transformation is determined by the commensurability of the wavelength of the plasmon–polariton mode and the planar size of the metal film. For different metal coatings, the dependence of the enhancement of the Raman scattering on the laser wavelength is measured.  相似文献   

15.
Broadband transverse displacement sensing by exploiting the interaction of a focused radially polarized beam with a silicon hollow nanodisk is proposed. The multipolar decomposition analysis indicates that the interference between a longitudinal total electric dipole(TED) moment and a lateral magnetic dipole(MD) moment is dominant in the far-field transverse scattering in the near-infrared region. Within a broadband wavelength range with the width of 155 nm, the longitudinal TED is almost in phase with the lateral MD, and then broadband position sensing based on the sensitivity of scattering directivity to transverse displacement can be achieved.  相似文献   

16.
金纳米薄膜的荧光光谱特性   总被引:2,自引:1,他引:1  
采用电化学方法制备了胶体盒纳米球状颗粒,并利用自组装方法在石英玻璃村底上镀制了金纳米薄膜。在室温下测得其紫外-可见吸收光谱和荧光发射光谱。在吸收光谱中观察到两个吸收峰,其中610nm、处的吸收峰来源于凝聚金纳米颗粒纵向的表面等离子体共振。在荧光发射光谱中也观察到与纵向表面等离子体共振有关的长波段的发射峰。增加激励光强度或增加薄膜中金粒子散密度都将导致新荧光发射峰的产生.这表明金纳米薄膜中存在循环多重散射,并由此引发了荧光发射峰数目和强度的变化。  相似文献   

17.
Noble metallic nanostructures exhibit special optical properties resulting from excitation of surface plasmons. Among the various metallic nanostructures, nanorods have attracted particular attention because of their unique and intriguing shape-dependent plasmonic properties. Nanorods can support transverse and longitudinal plasmon modes, the latter ones depending strongly on the aspect ratio of the nanorod. These modes can be routinely tuned from the visible to the near-infrared spectral regions. Although nanorods have been investigated extensively, there are few studies devoted to nanostructures deviating from the nanorod shape. This review provides an overview of recent progress in the development of two kinds of novel quasi-one-dimensional silver nanostructures, nanorice and nanocarrot, including their syntheses, crystalline characterizations, plasmonic property analyses, and performance in plasmonic sensing applications.  相似文献   

18.
A theoretical study based on discrete dipole approximation (DDA) and coupling effect is presented on the tunable transverse surface plasmon resonance (SPR) in a gold nanotube with varying aspect ratio (AR). Because gold nanotube has the shape features from both rod and shell, both the AR and wall thickness can greatly affect the transverse SPR. It is observed that the maximum red shift can be obtained with small wall thickness and AR. By calculating the local field distribution, the physical mechanism of this multi shape factors controlled plasmon shifting has been illustrated by the coulombic interaction from the charges at the interfaces of gold nanotube. This study indicates that finding the surface charge distribution by calculating the local electric field can be used as an effective method to analyze the plasmonic characters in complicated metallic nanostructure.  相似文献   

19.
曹敏  王孟  顾宁 《中国物理快报》2009,26(4):143-146
Optical absorption spectra of dielectric shell coated gold nanorods are simulated using the discrete dipole ap- proximation method. The influence of the aspect ratio, shell thickness, dielectric constant of the shell, and surrounding medium on the longitudinal resonance mode is investigated. It is found that the coated dielectric shell does not affect the trend in the dependence of resonance position on the aspect ratio, while it broadens the resonant line width and reduces the sensitivity of plasmon resonance in response to changes of the surrounding medium. F~arthermore, the difference of dielectric constants between the shell and surrounding medium plays an important role in determining the resonance position. The screening effect of the dielectric shell tends to be less apparent for a thicker shell thickness.Optical absorption spectra of dielectric shell coated gold nanorods are simulated using the discrete dipole ap- proximation method. The influence of the aspect ratio, shell thickness, dielectric constant of the shell, and surrounding medium on the longitudinal resonance mode is investigated. It is found that the coated dielectric shell does not affect the trend in the dependence of resonance position on the aspect ratio, while it broadens the resonant line width and reduces the sensitivity of plasmon resonance in response to changes of the surrounding medium. F~urthermore, the difference of dielectric constants between the shell and surrounding medium plays an important role in determining the resonance position. The screening effect of the dielectric shell tends to be less apparent for a thicker shell thickness.  相似文献   

20.
Its is found that the spectrum of the light emitted by statistically rough tunnel junctions in the range 400–700 nm correlates with the calculated damping of the fast surface plasmon polariton mode of the tunnel junction structure. It is deduced that the radiative decay of this mode is responsible for the bulk of the light emission. It is shown that the view of existing theory that emission from statistically rough junctions is mediated by the slow surface plasmon polariton mode is untenable. Our deductions firmly consolidate a suggestion due to Kroo, Szentirmay and Felszerfalvi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号