首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The block-localized wave function (BLW) method, which is the simplest variant of ab initio valence bond (VB) theory, together with the quantum theory of atoms in molecules (QTAIM) approach, have been used to probe the intramolecular hydrogen bonding interactions in a series of representative systems of resonance-assisted hydrogen bonds (RAHBs). RAHB is characteristic of the cooperativity between the π-electron delocalization and hydrogen bonding interactions and is identified in many biological systems. While the deactivation of the π resonance in these RAHB systems by the use of the BLW method is expected to considerably weaken the hydrogen bonding strength, little change on the topological properties of electron densities at hydrogen bond critical points (HBCPs) is observed. This raises a question of whether the QTAIM topological parameters can be an effective measure of hydrogen bond strength.  相似文献   

2.
The energies of intramolecular C-H…O, N-H…O, and O-H…O hydrogen bonds in model compounds are empirically estimated based on the values of the hydrogen bond induced weak-field shift of the bridging hydrogen atom signal in the 1H NMR spectrum. It is supported by a theoretical estimation of these energies based on the electron density value at the hydrogen bond critical point calculated within the QTAIM method. Good agreement between the empirical and theoretical estimates is found, which gives evidence of their reliability. It is shown that from the standpoint of their strength the intramolecular N-H…O and O-H…O hydrogen bonds can be classified as moderate whereas the intramolecular C-H…O hydrogen bonds must be classified as very weak interactions similar in their energy significance to van der Waals interactions.  相似文献   

3.
MP2/6-311++G(3pd,3df) calculations were performed on complexes of acetylene and fluoroform acting as the proton donating systems and different Lewis bases being the proton acceptors since these complexes are linked through C-H···Y hydrogen bonds. Quantum Theory of Atoms in Molecules (QTAIM) is applied to explain the nature of these interactions. The characteristics of bond critical points are presented for these complexes. The inter-relations between energetic and geometrical parameters as well as the parameters derived from the Natural Bond Orbital (NBO) theory are analyzed here. Red- and blue-shifted hydrogen bonds are detected for the complexes investigated and the differences between those interactions are analyzed from the QTAIM perspective. It is shown that such differences are in agreement with the Bent rule. The position of the bond critical point of the proton donating bond is connected with the nature of hydrogen bonding, that is, if it is blue- or red-shifted.  相似文献   

4.
5.
Benzobisthiazole polymer with resonance-assisted hydrogen bonds(RAHBs)has been synthesized for both organic field-effect transistor and polymer solar cell applications.The properties of the hydrogen bonded polymer are compared with the reference polymer without RAHBs.Single-crystal X-ray diffraction analyses of the building block reveal that the RAHB interactions are formed between the carbamate hydrogen and imine nitrogen of the thiazoles.The hydrogen donor and acceptor are connected byπ-conjugated molecular framework and the hydrogen-bridged quasi aromatic rings lock the conformation of the building block.The building block adopted a layered sandwich packing in crystal instead of slipped herringbone stacking which was often found in the crystal of benzobisthiazole derivatives.The polymer PCBTZ-TT with RAHBs showed deeper HOMO/LUMO energy level(about 0.2 eV)than reference polymer.The PCBTZ-TT demonstrated the hole mobility of0.96 cm2·V-1·s-1 in field-effect transistor devices and achieved power conversion efficiency of 13.6%in solar cell devices with Y6 as acceptor without any additive.  相似文献   

6.
The electronic charge redistribution and the infrared intensities of the two types of intramolecular hydrogen bonds, O-H···O and O-H···π, of o-hydroxy- and o-ethynylphenol, respectively, together with a set of related intermolecular hydrogen bond complexes are described in terms of atomic charges and charge fluxes derived from atomic polar tensors calculated at the B3LYP/cc-pVTZ level of theory. The polarizable continuum model shows that both the atomic charges and charge fluxes are strongly dependent on solvent. It is shown that their values for the OH bond in an intramolecular hydrogen bond are not much different from those for the "free" OH bond, but the changes are toward the values found for an intermolecular hydrogen bond. The intermolecular hydrogen bond is characterized not only by the decreased atomic charge but also by the enlarged charge flux term of the same sign producing thus an enormous increase in IR intensity. The overall behavior of the charges and fluxes of the hydrogen atom in OH and ≡CH bonds agree well with the observed spectroscopic characteristics of inter- and intramolecular hydrogen bonding. The main reason for the differences between the two types of the hydrogen bond lies in the molecular structure because favorable linear proton donor-acceptor arrangement is not possible to achieve within a small molecule. The calculated intensities (in vacuo and in polarizable continuum) are only in qualitative agreement with the measured data.  相似文献   

7.
The topological analysis, based on the quantum theory of atoms in molecules (QTAIM) of Bader and the ETS-NOCV charge and energy decomposition method have been used to characterize coordination bonds, chelating rings, and additional intramolecular interactions in the ZnNTA and ZnNTPA complexes in solvent. The QTAIM and ETS-NOCV studies have conclusively demonstrated that the H-clashes (they are observed only in the ZnNTPA complex and classically are interpreted as steric hindrance destabilizing a complex) are characterized by (i) the electron flow channel between the H-atoms involved, as discovered by the ETS-NOCV analysis (on average, ΔE(orb) = -1.35 kcal mol(-1)) and (ii) QTAIM-defined a bond path that indicates the presence of a preferred quantum-mechanical exchange channel, hence, they should be seen as H-H intramolecular bonding interactions. The main reason for the formation of a weaker ZnNTPA complex was attributed to the strain energy (from both QTAIM and ETS-NOCV techniques) and the larger Pauli repulsion contribution found from the ETS-NOCV analysis. An excellent agreement between physical properties controlling the stability of the two complexes was found from the two techniques, QTAIM and ETS-NOCV.  相似文献   

8.
The RAHB systems in malonaldehyde and its derivatives at MP2/ 6‐311++G(d,p) level of theory were studied and their intramolecular hydrogen bond energies by using the related rotamers method was obtained. The topological properties of electron density distribution in O? H···O intramolecular hydrogen bond have been analyzed in term of quantum theory of atoms in molecules (QTAIM). Correlations between the H‐bond strength and topological parameters are probed. The results of QTAIM clearly showed that the linear correlation between the electron density distribution at HB critical point and RAHB ring critical point with the corresponding hydrogen bond energies was obtained. Moreover, it was found a linear correlation between the electronic potential energy density, V(rcp), and hydrogen bond energy which can be used as a simple equation for evaluation of HB energy in complex RAHB systems. Finally, the similar linear treatment between the geometrical parameters, such as O···O or O? H distance, and Lp(O)→σ*OH charge transfer energy with the intramolecular hydrogen bond energy is observed. © 2010 Wiley Periodicals, Inc., Int J Quantum Chem, 2011  相似文献   

9.
ωB97XD/aug-cc-pVTZ calculations were performed for complexes of dihydrogen, cyclopropane, cyclobutane and cyclopentane, with simple proton donating species such as hydrogen fluoride, hydrogen chloride, water, hydrogen cyanide and acetylene. Numerous dependencies between geometrical, energetic and topological parameters of complexes considered were found, since various theoretical approaches were applied: Quantum Theory of ‘Atoms in Molecules’ (QTAIM), Natural Bond Orbital (NBO) method and energy decomposition analysis (EDA). It was confirmed that complexes of dihydrogen and cyclopropane are linked through the A−H…σ interactions that may be classified as hydrogen bonds. In the case of complexes of cyclobutane such hydrogen bonds are rather weak. Other type and also weak A−H…C hydrogen bonds are formed for complexes with cyclopentane.  相似文献   

10.
Intra- and intermolecular forces competition was investigated in the 9,10-anthraquinone (1) and its derivatives both in vacuo and in the crystalline phase. The 1,8-dihydroxy-9,10-anthraquinone (2) and 1,8-dinitro-4,5-dihydroxy-anthraquinone (3) contain Resonance-Assisted Hydrogen Bonds (RAHBs). The intramolecular hydrogen bonds properties were studied in the electronic ground and excited states employing Møller-Plesset second-order perturbation theory (MP2), Density Functional Theory (DFT) method in its classical formulation as well as its time-dependent extension (TD-DFT). The proton potential functions were obtained via scanning the OH distance and the dihedral angle related to the OH group rotation. The topological analysis was carried out on the basis of theories of Atoms in Molecules (AIM—molecular topology, properties of critical points, AIM charges) and Electron Localization Function (ELF—2D maps showing bonding patterns, calculation of electron populations in the hydrogen bonds). The Symmetry-Adapted Perturbation Theory (SAPT) was applied for the energy decomposition in the dimers. Finally, Car–Parrinello molecular dynamics (CPMD) simulations were performed to shed light onto bridge protons dynamics upon environmental influence. The vibrational features of the OH stretching were revealed using Fourier transformation of the autocorrelation function of atomic velocity. It was found that the presence of OH and NO2 substituents influenced the geometric and electronic structure of the anthraquinone moiety. The AIM and ELF analyses showed that the quantitative differences between hydrogen bonds properties could be neglected. The bridged protons are localized on the donor side in the electronic ground state, but the Excited-State Intramolecular Proton Transfer (ESIPT) was noticed as a result of the TD-DFT calculations. The hierarchy of interactions determined by SAPT method indicated that weak hydrogen bonds play modifying role in the organization of these crystal structures, but primary ordering factor is dispersion. The CPMD crystalline phase results indicated bridged proton-sharing in the compound 2.  相似文献   

11.
Block-localized wave function (BLW) method, which is a variant of the ab initio valence bond (VB) theory, was employed to explore the nature of resonance-assisted hydrogen bonds (RAHBs) and to investigate the mechanism of synergistic interplay between pi delocalization and hydrogen-bonding interactions. We examined the dimers of formic acid, formamide, 4-pyrimidinone, 2-pyridinone, 2-hydroxpyridine, and 2-hydroxycyclopenta-2,4-dien-1-one. In addition, we studied the interactions in beta-diketone enols with a simplified model, namely the hydrogen bonds of 3-hydroxypropenal with both ethenol and formaldehyde. The intermolecular interaction energies, either with or without the involvement of pi resonance, were decomposed into the Hitler-London energy (DeltaEHL), polarization energy (DeltaEpol), charge transfer energy (DeltaECT), and electron correlation energy (DeltaEcor) terms. This allows for the examination of the character of hydrogen bonds and the impact of pi conjugation on hydrogen bonding interactions. Although it has been proposed that resonance-assisted hydrogen bonds are accompanied with an increasing of covalency character, our analyses showed that the enhanced interactions mostly originate from the classical dipole-dipole (i.e., electrostatic) attraction, as resonance redistributes the electron density and increases the dipole moments in monomers. The covalency of hydrogen bonds, however, changes very little. This disputes the belief that RAHB is primarily covalent in nature. Accordingly, we recommend the term "resonance-assisted binding (RAB)" instead of "resonance-assisted hydrogen bonding (RHAB)" to highlight the electrostatic, which is a long-range effect, rather than the electron transfer nature of the enhanced stabilization in RAHBs.  相似文献   

12.
Physical properties of over 8000 intramolecular hydrogen bonds (iHBs), including 2901 ones of the types OH···O, OH···N, NH···O and OH···C, in 4244 conformers of the DNA-related molecules (four canonical 2'-deoxyribonucleotides, 1,2-dideoxyribose-5-phosphate, and 2-deoxy-D-ribose in its furanose, pyranose and linear forms) have been investigated using quantum theory of atoms in molecules (QTAIM) and vibrational analysis. It has been found that for all iHBs with positive red-shift of the proton donating group stretching frequency the shift value correlates with ρ(cp)-the electron charge density at the (3,-1)-type bond critical point. Combining QTAIM and spectroscopic data new relationships for estimation of OH···O, OH···N, NH···O and OH···C iHB enthalpy of formation (kcal mol(-1)) with RMS error below 0.8 kcal mol(-1) have been established: E(OH···O) = -3.09 + 239·ρ(cp), E(OH···N) = 1.72 + 142·ρ(cp), E(NH···O) = -2.03 + 225·ρ(cp), E(OH···C) = -0.29 + 288·ρ(cp), where ρ(cp) is in e a(0)(-3) (a(0)- the Bohr radius). It has been shown that XHY iHBs with red-shift values over 40 cm(-1) are characterized by the following minimal values of the XHY angle, ρ(cp) and nubla(2)ρ(cp): 112°, 0.005 e a(0)(-3) and 0.016 e a(0)(-5), respectively. New relationships have been used to reveal the strongest iHBs in canonical 2'-deoxy- and ribonucleosides and the O(5')H···N(3) H-bond in ribonucleoside guanosine was found to have the maximum energy (8.1 kcal mol(-1)).  相似文献   

13.
Glutathione tripeptide (γ-glutamyl-cysteinyl-glycine) is a flexible molecule and its conformational energy landscape is strongly influenced by forming intramolecular hydrogen bond, its charge and the environment. This study employs DFT-B3LYP method with the 6-31+G (d,p) basis set to carry out conformational analysis of neutral, zwitterionic, cationic, and anionic forms of glutathione. In analyzing the structural characteristics of these structures, intramolecular hydrogen bonds were identified and characterized in details by topological parameters such as electron density ρ(r) and Laplacian of electron density $ \nabla^{2} $ ρ(r) from Bader’s atom in molecules theory. Charge transfer energies based on natural bond orbital analysis are also considered to interpret these intramolecular hydrogen bonds. Our results show that these hydrogen bonds are partially electrostatic and partially covalent in nature, in which the covalent contribution increases as the stabilization energy of hydrogen bond increases. Furthermore, the back bone and side chain (Ramachandran map) orientations of various ionic forms of glutathione have been studied and conformation of each constitution of glutathione tripeptide (i.e., Glu, Cys, and Gly moieties) was determined. In most species side chain conformation were found to be hindered gauche–gauche orientation by intramolecular hydrogen bonds.  相似文献   

14.
ωB97-XD/aug-cc-pVTZ calculations were performed on dimers of selected thiocarboxylic acids and on analogous carboxylic acids. The sample of calculated thiocarboxylic acids is an extension of the Cambridge Structural Database search that contains only a few such structures. The Natural Bond Orbital (NBO) method, Symmetry-Adapted Perturbation Theory (SAPT) approach, Non-Covalent Interaction (NCI) method and Quantum Theory of Atoms in Molecules (QTAIM) were applied additionally to analyse interactions in dimers of thiocarboxylic and carboxylic acids. The insights into crystal structures as well as into results of calculations show that the formation of S−H…O hydrogen bonds between molecules of thiocarboxylic acids is steered by the same mechanisms as the formation of much stronger O−H…O hydrogen bonds in carboxylic acids. The intramolecular O−H…O and C−H…S hydrogen bonds occurring in few considered structures are also analysed.  相似文献   

15.
Mononuclear iron(III) complexes with terminal hydroxo ligands are proposed to be important species in several metalloproteins, but they have been difficult to isolate in synthetic systems. Using a series of amidate/ureido tripodal ligands, we have prepared and characterized monomeric Fe (III)OH complexes with similar trigonal-bipyramidal primary coordination spheres. Three anionic nitrogen donors define the trigonal plane, and the hydroxo oxygen atom is trans to an apical amine nitrogen atom. The complexes have varied secondary coordination spheres that are defined by intramolecular hydrogen bonds between the Fe (III)OH unit and the urea NH groups. Structural trends were observed between the number of hydrogen bonds and the Fe-O hydroxo bond distances: the more intramolecular hydrogen bonds there were, the longer the Fe-O bond became. Spectroscopic trends were also found, including an increase in the energy of the O-H vibrations with a decrease in the number of hydrogen bonds. However, the Fe (III/II) reduction potentials were constant throughout the series ( approximately 2.0 V vs [Cp 2Fe] (0/+1)), which is ascribed to a balancing of the primary and secondary coordination-sphere effects.  相似文献   

16.
A density functional theory (DFT) and atoms-in-molecules (AIM) analysis has been applied to the intramolecular hydrogen bonding in the enol conformers of malonaldehyde and its fluoro-, chloro-, cyano-, and nitro-substituted derivatives. With the B3LYP/6-311++G(2d,p) method, good agreement between the DFT geometries and published experimental structures has been found. The donor-acceptor distance was also varied in a series of constrained optimizations in order to determine if energetic, structural, and topological trends associated with intermolecular hydrogen bonding remain valid in the intramolecular case. At very short donor-acceptor distances (<2.24 A), the hydrogen is symmetrically located between donor and acceptor; at distances longer than this, the hydrogen bonding is no longer symmetric. The AIM methodology has been applied to explore the topology of the electron density in the intramolecular hydrogen bonds of the chosen model systems. Most AIM properties for intramolecular hydrogen bond distances longer than 2.24 A show smooth trends, consistent with intermolecular hydrogen bonds. Integrated AIM properties have also been used to explore the phenomenon of resonance-assisted hydrogen bonding (RAHB). It is shown that as the donor-acceptor distance is varied, pi-electron density is redistributed among the carbon atoms in the intramolecular hydrogen bond ring; however, contrary to prior studies, the integrated atomic charges on the donor-acceptor atoms were found to be insensitive to variation of hydrogen-bonding distance.  相似文献   

17.
Different types of noncovalent interactions such as, for example, halogen bond, hydrogen bond, and dihalogen bond are analyzed. The analysis is based on ab initio calculations which were performed on complexes of the F(3)CCl molecule. This choice is connected with the features of the Cl atom which may act as the Lewis acid and also as the Lewis base center. Such a dual role is a consequence of the existence of negative and positive regions of the electrostatic potential of the Cl center. Hence, the F(3)CCl molecule forms complexes linked by various interactions. The formation of the complexes leads to the electron charge redistribution which is reflected in the quantum theory of atoms in molecules (QTAIM) characteristics. Numerous correlations and tendencies were found here between QTAIM, geometrical and energetic parameters. It was found that the mechanism of the formation of complexes linked through various interactions is generally the same as that known for the hydrogen bond formation. The dependencies and QTAIM characteristics considered here are in agreement with Bent's rule.  相似文献   

18.
Understanding the nature of the interaction between metal nanoparticles and biomolecules has been important in the development and design of sensors. In this paper, structural, electronic, and bonding properties of the neutral and anionic forms of glutathione tripeptide (GSH) complexes with a Au(3) cluster were studied using the DFT-B3LYP with 6-31+G**-LANL2DZ mixed basis set. Binding of glutathione with the gold cluster is governed by two different kinds of interactions: Au-X (X = N, O, and S) anchoring bond and Au···H-X nonconventional hydrogen bonding. The influence of the intramolecular hydrogen bonding of glutathione on the interaction of this peptide with the gold cluster has been investigated. To gain insight on the role of intramolecular hydrogen bonding on Au-GSH interaction, we compared interaction energies of Au-GSH complexes with those of cystein and glycine components. Our results demonstrated that, in spite of the ability of cystein to form highly stable metal-sulfide interaction, complexation behavior of glutathione is governed by its intramolecular backbone hydrogen bonding. The quantum theory of atom in molecule (QTAIM) and natural bond orbital analysis (NBO) have also been applied to interpret the nature of interactions in Au-GSH complexes. Finally, conformational flexibility of glutathione during complexation with the Au(3) cluster was investigated by means of monitoring Ramachandran angles.  相似文献   

19.
NMR studies reveal that the equilibrium between 1 and 2 lies essentially toward 1 to the left without any detectable amount of 2. DFT computation shows that the value of K1 is about 1.4 x 10-5, and X-ray crystal structures show that the resonance-assisted hydrogen bond (RAHB) in 1 (1.66 A) is shorter than the regular hydrogen bond in 2 (1.75 A). The enormous selectivity can be explained in terms of the strength of the RAHBs in 1 compared to that of the regular hydrogen bonds in 2.  相似文献   

20.
We seek to explain why the hydrogen bond possesses unusual strength in small water clusters that account for many of the complex behaviors of water. We have investigated and visualized the donation of covalent character from covalent (sigma) to hydrogen bonds by calculating the eigenvector coupling properties of quantum theory of atoms in molecules (QTAIM), stress tensor σ ( r ), and Ehrenfest Force F ( r ) on the F ( r ) molecular graph. The next-generation three-dimensional (3-D) bond-path framework sets are presented, and only the F ( r ) bond-path framework sets reproduce the earlier finding on the coupling between covalent (sigma) and hydrogen bonds that possess a degree of covalent character. Exploration of the bond-path between the covalent (sigma) and hydrogen bond's critical points provides an explanation for the previously obtained coupling results. The directional character of the covalent (sigma) and hydrogen bonds' 3-D bond-path framework sets for the F ( r ) explains differences found in the earlier results from QTAIM and the stress tensor σ ( r ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号