首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated the pressure-induced phase transition of InX (X = P, As, Sb) from Zinc-Blende (ZB) to NaCl structure by using realistic interaction potential model involving the effect of temperature. This model consists of Coulomb interaction, three-body interaction and short-range overlap repulsive interaction upto the second nearest neighbor involving temperature. Phase-transition pressure is associated with a sudden collapse in volume, showing the incidence of first-order phase transition. The phase-transition pressure is associated with volume collapses, and the elastic constants obtained from the present model indicate good agreement with the available experimental and theoretical data.  相似文献   

2.
In this paper, we study the structural, electronic and elastic properties of the ternary AgSbTe2, AgSbSe2, Pr3AlC, Ce3AlC, Ce3AlN, La3AlC and La3AlN compounds using the full-potential linearized augmented plane wave (FP-LAPW) scheme and the pseudopotential plane wave (PP-PW) scheme in the frame of generalized gradient approximation (GGA). Results are given for the lattice parameters, bulk modulus, and its pressure derivative. The calculated lattice parameters are in good agreement with experimental results. We have determined the full set of first-order elastic constants, shear modulus, Young's modulus and Poisson's ratio of these compounds. Also, we have presented the results of the band structure, densities of states, it is found that this compounds metallic behavior, and a negative gap Г→R for Pr3AlC. The analysis charge densities show that bonding is of covalent–ionic and ionic nature for AgSbSe2 and AgSbTe2 compounds.  相似文献   

3.
Structural, elastic and mechanical properties of orthorhombic SrHfO3 under pressure have been investigated using the plane-wave ultrasoft pseudopotential technique based on the first-principles density functional theory. The calculated equilibrium lattice parameters and elastic constants of orthorhombic SrHfO3 at zero pressure are in good agreement with the available experimental and calculational values. The lattice parameters, total enthalpy, elastic constants and mechanical stability of orthorhombic SrHfO3 as a function of pressure were studied. With the increasing pressure, the lattice parameters and volume of orthorhombic SrHfO3 decrease whereas the total enthalpy increases. Orthorhombic SrHfO3 is mechanically stable with low pressure (<52.9 GPa) whereas that is mechanically instable with high pressure (>52.9 GPa). The bulk modulus, shear modulus, Young's modulus and mechanical anisotropy of orthorhombic SrHfO3 as a function of pressure were analyzed. It is found that orthorhombic SrHfO3 under pressure has larger bulk modulus, better ductility and less mechanical anisotropy than orthorhombic SrHfO3 at 0 GPa.  相似文献   

4.
We investigate the structural and elastic properties of LaTiO3 by the plane-wave pseudopotential density functional theory method. The lattice constants, bulk modulus and its pressure derivative are obtained. These properties in the equilibrium phase are well consistent with the available experimental data. The pressure dependence of the elastic constants, ductility, mechanical stabilities, sound velocity and Debye temperatures are investigated for the first time. From the ratio G/B, we conclude that LaTiO3 is ductile at 0 GPa and becomes more ductile at high pressure. In addition, the anisotropy factors for every symmetry plane and axis as well as linear bulk modulus at diverse pressures have been obtained.  相似文献   

5.
We employ the spin-polarized generalized gradient approximation within the density functional theory to investigate the equation of state, magnetism and elastic constant of cubic ACrO3 (A=Pb, Ca, Sr, and Ba) perovskite. The antiferromagnetic phase is the most stable state at zero pressure. Under pressure, the ferromagnetic state will transform to the non-magnetic state. Considering the effect of magnetism, the equilibrium lattice constant, the bulk modulus and the high pressure equations of state agree well with the available experiments. By using the energy-strain method, the predicted elastic properties are satisfactory.  相似文献   

6.
We have investigated the structural and elastic properties of TiN at high pressures by the first-principles plane wave pseudopotential density functional theory method at applied pressures up to 45.4 GPa. The obtained normalized volume dependence of the resulting pressure is in excellent agreement with the experimental data investigated using synchrotron radial x-ray diffraction (RXRD) under nonhydrostatic compression up to 45.4 GPa in a diamond-anvil cell. Three independent elastic constants at zero pressure and high pressure are calculated. From the obtained elastic constants, the bulk modulus, Young's modulus, shear modulus, acoustic velocity and Debye temperature as a function of the applied pressure are also successfully obtained.  相似文献   

7.
An improved interaction potential model (IIPM) has been formulated to theoretically predict the pressure induced phase transition, elastic properties and thermophysical properties of thorium monopnictides (ThX; X = N, P, As and Sb). The phase transition pressures and volume drop obtained from this model show a better agreement with the available experimental than theoretical results. We have achieved elastic moduli, anisotropy factor, Poisson's ratio, Kleinman parameter, shear and stiffness constants on the basis of the calculated elastic constants. To know the anharmonic properties, we have also computed the third-order elastic constants, first-order pressure derivatives of second-order elastic constants and thermophysical quantities. Our results are in reasonable agreement with available measured and others reported data which supports the validity of model.  相似文献   

8.
ABSTRACT

The structural, electronic, elastic and thermodynamic properties of LuX (X = N, Bi and Sb) based on rare earth into phases, Rocksalt (B1) and CsCl (B2) have been investigated using full-potential linearized muffin-tin orbital method (FP-LMTO) within density functional theory. Local density approximation (LDA) for exchange-correlation potential and local spin density approximation (LSDA) are employed. The structural parameters as lattice parameters a0, bulk modulus B, its pressure derivate B’ and cut-off energy (Ec) within LDA and LSDA are presented. The elastic constants were derived from the stress–strain relation at 0 K. The thermodynamic properties for LuX using the quasi-harmonic Debye model are studied. The temperature and pressure variation of volume, bulk modulus, thermal expansion coefficient, heat capacities, Debye temperature and Gibbs free energy at different pressures (0–50 GPa) and temperatures (0–1600 K) are predicted. The calculated results are in accordance with other data.  相似文献   

9.
We have investigated the elastic and thermodynamic properties for the perovskite type metavanadate SrVO3 and the multiferroic PbVO3, probably for the first time by the means of a Modified Rigid Ion Model (MRIM). We present the elastic constants (C11,C12,C44) and other elastic properties like Bulk modulus (B), Young′s modulus (E), shear modulus (G), Poisson′s ratio (σ) and wave velocity (υl, υs, υm). Besides we have reported the thermodynamic properties molecular force constant (f), Reststrahlen frequency (ν), cohesive energy (?), Debye temperature (θD) and Gruneisen parameter (γ). We have also computed the variation of heat capacity (CP) and there by volume thermal expansion coefficient (α) in a wide temperature range. We found that the computed properties reproduce well with the available data in literature. To our knowledge some of the properties are reported for the first time.  相似文献   

10.
Spin-polarized calculations were performed to investigate the structural, elastic, electronic, and magnetic properties of InCCo3 and InNCo3. The deviation of our calculated lattice parameters and equilibrium volume from experimental results is less than 0.8% and 2.5%, respectively. The obtained values of elasticity moduli Cij, bulk modulus B, and shear modulus G are discussed. From the calculated band structure and the total and partial densities of states, we have concluded that these compounds are electrical conductors; moreover, they are bonded by a mixture of covalent, ionic, and metallic bonds. Our calculations show that InCCo3 has nonmagnetic properties, while InNCo3 could have a magnetic behaviour, with an average magnetic moment about 0.54 μB/atom, which is mostly derived from d electrons of the cobalt atoms in the energy range from −5 eV up to the Fermi level.  相似文献   

11.
An effective interionic interaction potential is developed to discuss the pressure induced structural phase transformation and mechanical properties of InX (X = N, P, As) semiconducting compounds. The effective interionic potential consists of the long-range Coulomb and three-body interactions and the Hafemeister and Flygare type short-range overlap repulsion extended upto the second neighbour ions and the van der Waals interaction. The present calculations have revealed reasonably good agreement with the available experimental data on the phase transition pressures (Pt = 11.5, 10, 7.5 GPa) and the elastic properties of InX (X = N, P, As). The equation of state curves (plotted between V (P)/V(0) and pressure) for both the structures zincblende (B3) and rocksalt (B1) structures obtained by us are in fairly good agreement with the experimental results. The calculated values of the volume collapses [ΔV(P)/V(0)] are also closer to their observed data.  相似文献   

12.
We report on first-principles study of the structural and elastic properties of the Nowotny-Juza filled tetrahedral compounds LiZnX (X=N, P, As) using the full-potential linearized augmented plane wave method within the local density approximations. Our results indicate that the energetically favourable α-LiZnX materials are slightly softer than their binary analogous GaX and the sound speeds are quantitatively similar for LiZnAs and GaAs.  相似文献   

13.
Using first-principles density functional calculations, the effect of high pressures, up to 40 GPa, on the structural and elastic properties of ANCa3, with A = P, As, Sb, and Bi, were studied by means of the pseudo-potential plane-waves method. Calculations were performed within the local density approximation and the generalized gradient approximation for exchange-correlation effects. The lattice constants are in good agreement with the available results. The elastic constants and their pressure dependence are calculated using the static finite strain technique. We derived the bulk and shear moduli, Young's modulus, Poisson's ratio and Lamé's constants for ideal polycrystalline ANCa3 aggregates. By analysing the ratio between the bulk and shear moduli, we conclude that ANCa3 compounds are brittle in nature. We estimated the Debye temperature of ANCa3 from the average sound velocity. This is the first quantitative theoretical prediction of the elastic properties of PNCa3, AsNCa3, SbNCa3, and BiNCa3 compounds, and it still awaits experimental confirmation.  相似文献   

14.
The hydrostatic pressure dependence of the principal energy gaps and of the optical properties of GaX (X = P, As and Sb) has been calculated using the full potential-linearized augmented plane wave (FP-LAPW) method. The generalized gradient approximation (GGA) for the exchange and correlation potential is applied. Also, we have used the Engel–Vosko GGA formalism, which optimizes the corresponding potential for band-structure and the optical properties calculations. Structural properties such as equilibrium lattice constants, the bulk modulus, and its pressure derivatives were calculated for GaP, GaAs, and GaSb in the zinc-blende structure (ZB). We have found that the results of the structural properties calculations are in agreement with those of ab initio and experimental data. In general, the pressure dependence of the principal energy gaps is compared to other values. The same is for the pressure coefficient. However, for the same structure, the comparison of our results with those of experimental and theoretical calculations shows good agreement. On the other hand, the effect of the applied pressure is clearly seen in the optical properties especially near the energy transition regions.  相似文献   

15.
The complete sets of second- and third-order elastic constants of the cubic Fe72Pt28 have been obtained using the strain energy density derived from interactions up to three nearest neighbours of each atom in the unit cell. The finite strain elasticity theory has been used to get the strain energy density of Fe72Pt28. The strain energy density is compared with the strain-dependent lattice energy density obtained from the continuum model approximation and the expressions for the second- and third-order elastic constants of Fe72Pt28 are given. The second-order potential parameter is deduced from the measured second-order elastic constants of Fe72Pt28 and the third-order potential parameter is estimated from the Lennard-Jones inter-atomic potential for Fe72Pt28. The inter-lattice displacements; the three independent second-order elastic constants and the six independent third-order elastic constants of Fe72Pt28 are also determined. The second-order elastic constants are compared with the experimental elastic constants of Fe72Pt28. We also study the effect of pressure on the second-order elastic constants of Fe72Pt28.  相似文献   

16.
Numerical calculations based on the full potential muffin-tin orbitals method (FP-LMTO) within the local density approximation (LDA) and the local spin-density approximation (LSDA) to investigate the structural, electronic and thermodynamic properties of filled skutterudite EuFe4Sb12 are presented. The electronic band structure and density of states profiles prove that this material is a conductor. The present investigation is also extended to the elastic constants, such as the bulk modulus B, anisotropy factor A, shear modulus G, young's modulus E, Poisson's ratio ν, and the B/G ratio with pressure in the range of 0–40 GPa. The sound velocities and Debye temperatures are also predicted from the above constants. The variations of the primitive cell volume, expansion coefficient α, bulk modulus B, heat capacity (Cp and Cv), Debye temperature θD, Helmholtz free energy A, Gibbs free energy G, entropy S, and internal energy U with pressure and temperature in the range 0–3000 K are calculated successfully.  相似文献   

17.
The structural, elastic, electronic, optical and thermal properties of the semiconductor perovskite CsPbCl3 were investigated using the pseudo-potential plane wave (PP-PW) scheme in the frame of generalized gradient approximation (GGA) and local density approximation (LDA). The computed lattice constant agrees reasonably with experimental and theoretical ones. The CsPbCl3 crystal behaves as ductile material. The valence bands are separated from the conduction bands by a direct band gap R-R. We distinguished hybridization between Pb-p states and Cl-p states in the valence bonding region. Under compression at P=30 GPa, this material will have a metallic character. The thermal effect on the lattice constant, bulk modulus, Debye temperature and heat capacity CV was predicted using the quasi-harmonic Debye model. To the author's knowledge, most of the studied properties are reported for the first time.  相似文献   

18.
We have evolved an effective interionic interaction potential to investigate the pressure-induced phase transitions from zinc blende (B3) to rock salt (B1) structure in II-VI [ZnSe] semiconductors. The elastic constants, including the long-range Coulomb and van der Waals (vdW) interactions and the short-range repulsive interaction of up to second-neighbor ions within the Hafemeister and Flygare approach, are deduced. Keeping in mind that both of the ions are polarisable, we employed the Slater-Kirkwood variational method to estimate the vdW coefficients. The estimated value of the phase transition pressure (P t ) is higher than in the reported data, and the magnitude of the discontinuity in volume at the transition pressure is consistent with that data. The major volume discontinuity in the pressure-volume phase diagram identifies the structural phase transition from zinc blende to rock salt structure.

The variation of second-order elastic constants with pressure resembles that observed in some binary semiconductors. It is inferred that the vdW interaction is effective in obtaining the thermodynamic parameters such as the Debye temperature, the Gruneisen parameter, the thermal expansion coefficient and the compressibility. However, the inconsistency between the thermodynamic parameters as obtained from present model calculations and their experimental values is attributed to the fact that we have derived our expressions by assuming the overlap repulsion to be significant only up to the nearest second-neighbor ions, as well as neglecting thermal effects. It is thus argued that full analysis of the many physical interactions that are essential to binary semiconductors will lead to a consistent explanation of the structural and elastic properties of II–VI semiconductors.  相似文献   

19.
A density functional-based method is used to investigate the structural, elastic and thermodynamic properties of the cubic spinel semiconductors MgIn2S4 and CdIn2S4 at different pressures and temperatures. Computed ground structural parameters are in good agreement with the available experimental data. Single-crystal elastic parameters are calculated for pressure up to 10 GPa and temperature up to 1200 K. The obtained elastic constants values satisfy the requirement of mechanical stability, indicating that MgIn2S4 and CdIn2S4 compounds could be stable in the investigated pressure range. Isotropic elastic parameters for ideal polycrystalline MgIn2S4 and CdIn2S4 aggregates are computed in the framework of the Voigt–Reuss–Hill approximation. Pressure and thermal effects on some macroscopic properties such as lattice constant, volume expansion coefficient and heat capacities are predicted using the quasi-harmonic Debye model in which the lattice vibrations are taken into account.  相似文献   

20.
The crystal structures, band structures, elastic constants, hardness, and optical properties of pyrite-type dinitrides (CN2, SiN2, and GeN2) are obtained from the density functional theory using the plane-wave pseudopotential (PWP) method within the local density and generalized gradient approximations. The formation enthalpies for AN2 (A=C, Si, and Ge) compounds suggest the three structures that are stable. The calculated band structures show the indirect gaps (ΓR) in CN2, SiN2, and GeN2. The intrinsic hardnesses of AN2 (A=C, Si, and Ge ) compounds are calculated. Our results show that the cubic CN2 and SiN2 are superhard materials. Furthermore, we studied the optical properties such as the complex dielectric function and the electron energy loss spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号