首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Domain walls in ferroelectric materials have tantalizing potential in disruptive memory and reconfigurable nanoelectronics technologies. Here, a ferroelectric domain wall switch with three distinct addressable resistance states is demonstrated. The device operation hinges on fully controllable and reversible conformational changes of the domain wall. As validated by atomistic simulations consistent with the experiments, using electric field, the shape—and hence the charge state—of the domain wall and ultimately its conduction are altered. Sequential nanoscale transitions of the walls are visualized directly using stroboscopic‐piezoresponse force microscopy and Kelvin probe microscopy. Anisotropic head‐to‐head domain wall injection, stabilized by the majority carrier type of the ferroelectric, BiFeO3, is identified as the key factor that enables conformational control.  相似文献   

2.
Erasable electrical conductive domain walls in an insulating ferroelectric matrix provide novel functionalities for applications in logic and memory devices. The crux of such success requires sufficiently high wall currents to drive high‐speed and high‐power nanodevices. This work provides an appealing strategy to increase the current by two orders of magnitude through the careful selection of current flowing paths along the charged walls. The dense walls come into form through the hierarchical evolution of the 71°, 109°, and 180° domains of epitaxial BiFeO3 films in a planar‐geometry ferroelectric resistance‐switching memory cell. The engineered films grown on SrTiO3 and GdScO3 substrates allow the observation of detailed local configurations and the evolution of the different domain types using vector piezo‐force microscopy. The higher local electrical conductivity near the charged domain walls is identified by conductive atomic‐force microscopy. It is shown that 180° domain reversal proceeds by three‐step 71° rotations of the pristine domains. Surprisingly, a maximum current of ≈300 nA is observed for current paths along charge‐uncompensated head‐to‐head hierarchical domain walls connecting the two electrodes on the film surface. Furthermore, the achievable current level can be conveniently controlled by varying the relative directions of the initial polarization and the applied field.  相似文献   

3.
Ferroelectric domain formation is an essential feature in ferroelectric thin films. These domains and domain walls can be manipulated depending on the growth conditions. In rhombohedral BiFeO3 thin films, the ordering of the domains and the presence of specific types of domain walls play a crucial role in attaining unique ferroelectric and magnetic properties. In this study, controlled ordering of domains in BiFeO3 film is presented, as well as a controlled selectivity between two types of domain walls is presented, i.e., 71° and 109°, by modifying the substrate termination. The experiments on two different substrates, namely SrTiO3 and TbScO3, strongly indicate that the domain selectivity is determined by the growth kinetics of the initial BiFeO3 layers.  相似文献   

4.
Previous studies of single crystal BiFeO3 have found a dense domain structure with alternating sawtooth and flat domain walls (DWs). The nature of these domains and their 3D structure has remained elusive to date. Herein, several sections taken at different orientations are used to examine the structure in detail, concentrating here on the sawtooth DWs using diffraction contrast transmission electron microscopy, electron diffraction, and aberration-corrected scanning transmission electron microscopy (STEM). All DWs are found to be 180° type; the flat walls have head-to-head polarity while the sawtooth DWs are tail-to-tail with peaks elongated along the polar [111] axis, formed by neutral ( 11 2 ¯ $11\bar{2}$ ) DW facets and slightly charged facets with orientations close to ( 3 2 ¯ 1 $3\bar{2}1$ ) and ( 2 ¯ 31 $\overline{2}31$ ). The neutral DW facets are Ising type and very abrupt, while the charged DW facets have mixed Néel/Bloch/Ising character with a chiral nature and a width of about 2 nm.  相似文献   

5.
The microscopic mechanism of polarization fatigue (i.e., a loss of switchable polarization under electrical cycling) remains one of the most important long‐standing problems in ferroelectric communities. Although there are numerous proposed fatigue models, a consensus between the models and experimental results is not reached yet. By using modified‐piezoresponse force microscopy, nanoscale domain switching dynamics are visualized for different fatigue stages in epitaxial PbZr0.4Ti0.6O3 capacitors. Systematic time‐dependent studies of the domain nucleation and evolution reveal that domain wall pinning, rather than nucleation inhibition, is the primary origin of fatigue. In particular, the evolution of domain wall pinning process during electrical cycling, from the suppression of sideways domain growth in early fatigued stages to the blockage of forward domain growth in later stages, is directly observed. The pinning of forward growth results in a nucleation‐limited polarization switching and a significant slowdown of the switching time in the severely fatigued samples. The direct nanoscale observation of domain nucleation and growth dynamics elucidates the importance of evolution of the domain wall pinning process in the fatigue of ferroelectric materials.  相似文献   

6.
7.
A domain wall‐enabled memristor is created, in thin film lithium niobate capacitors, which shows up to twelve orders of magnitude variation in resistance. Such dramatic changes are caused by the injection of strongly inclined conducting ferroelectric domain walls, which provide conduits for current flow between electrodes. Varying the magnitude of the applied electric‐field pulse, used to induce switching, alters the extent to which polarization reversal occurs; this systematically changes the density of the injected conducting domain walls in the ferroelectric layer and hence the resistivity of the capacitor structure as a whole. Hundreds of distinct conductance states can be produced, with current maxima achieved around the coercive voltage, where domain wall density is greatest, and minima associated with the almost fully switched ferroelectric (few domain walls). Significantly, this “domain wall memristor” demonstrates a plasticity effect: when a succession of voltage pulses of constant magnitude is applied, the resistance changes. Resistance plasticity opens the way for the domain wall memristor to be considered for artificial synapse applications in neuromorphic circuits.  相似文献   

8.
Ferroic materials play an increasingly important role in novel (nano)electronic devices. Recently, research on domain walls (DWs) receives a big boost by the discovery of DW conductivity (DWC) in BiFeO3 and Pb(ZrxTi1‐x)O3 ferroic thin films. Here, it is demonstrated that DWC is not restricted to thin films, but equally applies to millimeter‐thick wide‐bandgap, ferroic single crystals, such as LiNbO3. In this material transport along DWs can be switched by super‐bandgap illumination and tuned by engineering the tilting angle of DWs with respect to the polar axis. The results are consistently obtained using conductive atomic force microscopy to locally map the DWC and macroscopic contacts, thereby in addition investigating the temperature dependence, DW transport activation energies, and relaxation behavior.  相似文献   

9.
In 2009, Karimi et al. reported that Bi1‐xNdxFeO3 0.15 ≤ x ≤ 0.25 exhibited a PbZrO3 (PZ)‐like structure. These authors presented some preliminary electrical data for the PZ‐like composition but noted that the conductivity was too high to obtain radio‐frequency measurements representative of the intrinsic properties. In this study, Bi0.85Nd0.15Fe1‐yTiyO3 (0 ≤ y ≤ 0.1) were investigated, in which Ti acted as a donor dopant on the B‐site. In contrast to the original study of Karimi et al., X‐ray diffraction (XRD) of Bi0.85Nd0.15FeO3 revealed peaks which were attributed to a mixture of PZ‐like and rhombohedral structures. However, as the Ti (0 < y ≤ 0.05) concentration increased, the rhombohedral peaks disappeared and all intensities were attributed to the PZ‐like phase. For y = 0.1, broad XRD peaks indicated a significant decrease in effective diffracting volume. Electron diffraction confirmed that the PZ‐like phase was dominant for y ≤ 0.05, but for y = 0.1, an incommensurate structure was present, consistent with the broadened XRD peaks. The substitution of Fe3+ by Ti4+ decreased the dielectric loss at room temperature from >0.3 to <0.04 for all doped compositions, with a minimum (0.015) observed for y = 0.03. The decrease in dielectric loss was accompanied by a decrease in the room temperature bulk conductivity from ~1 mS cm?1 to <1 μS cm?1 and an increase in bulk activation energy from 0.29 to >1 eV. Plots of permittivity (?r) versus temperature for 0.01 ≤ y ≤ 0.05 revealed a step rather than a peak in ?r on heating at the same temperature determined for the antiferroelectric–paraelectric phase transition by differential scanning calorimetry. Finally, large electric fields were applied to all doped samples which resulted in a linear dependence of polarisation on the electric field similar to that obtained for PbZrO3 ceramics under equivalent experimental conditions.  相似文献   

10.
Self-assembled BiFeO3-CoFe2O4 (BFO-CFO) vertically aligned nanocomposites are promising for logic, memory, and multiferroic applications, primarily due to the tunability enabled by strain engineering at the prodigious epitaxial vertical interfaces. However, local investigations directly revealing functional properties in the vicinity of such critical interfaces are often hampered by the size, geometry, microstructure, and concomitant experimental artifacts. Ferroelectric switching in the presence of lateral distributions of vertical strain thus remains relatively unexplored, with broader implications for all strain-engineered functional devices. By implementing tomographic atomic force microscopy, 3D domain orientation mapping, and spatially-resolved ferroelectric switching movies, local tensile strain significantly impacts the ferroelectric switching, principally by retarding domain nucleation in the BFO nearest to the vertically epitaxial tensile-strained interfaces. The relaxed centers of the BFO pillars become preferred domain nucleation and growth sites for low biases, with up to an order of magnitude change in the edge:center switching ratio for high biases. The new, multi-dimensional imaging approach—and its corresponding insights especially for directly strained interface effects on local properties—thereby advances the fundamental understanding of polarization switching and provides design principles for optimizing functional response in confined nanoferroic systems.  相似文献   

11.
A tetragonal BiFeO3 phase with giant c/a of approximately 1.25 has been of great interest recently as it potentially possesses a giant polarization and much enhanced electromechanical response. This super‐tetragonal phase is known to be a stable phase only under high compressive strains of above approximately 4.5%, according to first principle calculations. However, in previous work, this super‐tetragonal BiFeO3 phase was obtained in films deposited at high growth rate on SrTiO3 substrates with compressive strain of only around 1.5%. By detailed structure analysis using high resolution synchrotron X‐ray diffraction, atomic force microscopy, and transmission electron microscopy, the parasitic β‐Bi2O3 phase is identified as the origin inducing the formation of super‐tetragonal BiFeO3 phase on SrTiO3 substrates. In addition, ab initio calculations also confirm that this super‐tetragonal phase is more stable than monoclinic phase when Bi2O3 is present. Using Bi2O3 as a buffer layer, an alternative route, not involving strain engineering, is proposed to stabilize this promising super‐tetragonal BiFeO3 phase at low growth rates.  相似文献   

12.
Defect engineering is one of the cornerstones of the modern electronics industry. Almost all electronic devices include materials that have been doped by ion bombardment. For materials where crystallinity is essential, such as ferroelectrics, defect type and concentration can vastly influence properties and are often used to optimize device performance. This study shows a method to effectively control the density and position on the nanoscale of defect sites in thin films of Pb(Zr,Ti)O3 via focused ion beam microscopy. This allows for exceptional clarity of observation of the role of defects in nucleation, polarization switching, and domain wall interaction through investigation with piezoresponse force microscopy and transmission electron microscopy, adding insight to accepted but seldom‐demonstrated facts on defect‐induced effects. This nanoscale defect engineering can be used as a tool to control material properties, and furthermore, a route is demonstrated toward a practical application.  相似文献   

13.
As we reach the physical limit of Moore's law and silicon based electronics, alternative schemes for memory and sensor devices are being proposed on a regular basis. The properties of ferroelectric materials on the nanoscale are key to developing device applications of this intriguing material class, and nanostructuring has been readily pursued in recent times. Focused ion beam (FIB) microscopy is one of the most significant techniques for achieving this. When applied in tandem with the imaging and nanoscale manipulation afforded by proximal scanning force microscopy tools, FIB‐driven nanoscale characterization has demonstrated the power and ability which simply may not be possible by other fabrication techniques in the search for innovative and novel ferroic phenomena. At the same time the process is not without pitfalls; it is time‐consuming and success is not always guaranteed thus often being the bane in progress. This balanced review explores a brief history of the relationship between the FIB and ferroelectrics, the fascinating properties it has unveiled, the challenges associated with FIB that have led to alternative nanostructuring techniques and finally new ideas that should be explored using this exciting technique.  相似文献   

14.
Self‐poling of ferroelectric films, i.e., a preferred, uniform direction of the ferroelectric polarization in as‐grown samples is often observed yet poorly understood despite its importance for device applications. The multiferroic perovskite BiFeO3, which crystallizes in two distinct structural polymorphs depending on applied epitaxial strain, is well known to exhibit self‐poling. This study investigates the effect of self‐poling on the monoclinic domain configuration and the switching properties of the two polymorphs of BiFeO3 (R′ and T′) in thin films grown on LaAlO3 substrates with slightly different La0.3Sr0.7MnO3 buffer layers. This study shows that the polarization state formed during the growth acts as “imprint” on the polarization and that switching the polarization away from this self‐poled direction can only be done at the expense of the sample's monoclinic domain configuration. The observed reduction of the monoclinic domain size is largely reversible; hence, the domain size is restored when the polarization is switched back to its original orientation. This is a direct consequence of the growth taking place in the polar phase (below Tc). Switching the polarization away from the preferred configuration, in which defects and domain patterns synergistically minimize the system's energy, leads to a domain state with smaller (and more highly strained and distorted) monoclinic domains.  相似文献   

15.
Domain switching pathways fundamentally control performance in ferroelectric thin film devices. In epitaxial bismuth ferrite (BiFeO3) films, the domain morphology is known to influence the multiferroic orders. While both striped and mosaic domains have been observed, the origins of the latter have remained unclear. Here, it is shown that domain morphology is defined by the strain profile across the film–substrate interface. In samples with mosaic domains, X‐ray diffraction analysis reveals strong strain gradients, while geometric phase analysis using scanning transmission electron microscopy finds that within 5 nm of the film–substrate interface, the out‐of‐plane strain shows an anomalous dip while the in‐plane strain is constant. Conversely, if uniform strain is maintained across the interface with zero strain gradient, striped domains are formed. Critically, an ex situ thermal treatment, which eliminates the interfacial strain gradient, converts the domains from mosaic to striped. The antiferromagnetic state of the BiFeO3 is also influenced by the domain structure, whereby the mosaic domains disrupt the long‐range spin cycloid. This work demonstrates that atomic scale tuning of interfacial strain gradients is a powerful route to manipulate the global multiferroic orders in epitaxial films.  相似文献   

16.
Conductive ferroelectric domain walls—ultranarrow configurable conduction paths—have been considered as essential building blocks for future programmable domain wall electronics. For applications in high‐density devices, it is imperative to explore the conductive domain walls in small confined systems, while earlier investigations have hitherto focused on thin films or bulk single. Here, an observation and manipulation of conductive domain walls confined within small BiFeO3 nanoislands aligned in high‐density arrays are demonstrated. Using conductive atomic force microscopy, various types of conductive domain walls, including the head‐to‐head charged domain walls (CDWs), zigzag domain walls, and typical 71° head‐to‐tail neutral domain walls (NDWs), are distinctly visualized. The CDWs exhibit remarkably enhanced metallic conductivity with current of ≈nA order in magnitude and 104 times larger than that inside domains (0.01–0.1 pA), while the semiconducting NDWs allow much smaller current (≈10 pA) than the CDWs. The substantial difference in conductivity for dissimilar walls enables manipulations of various wall conduction states for individual addressable nanoislands via electrical tuning of domain structures. A controllable writing of four distinctive states in individual nanoislands can be achieved, showing application potentials for developing multilevel high‐density memories.  相似文献   

17.
The dielectric and piezoelectric properties of ferroelectric polycrystalline materials have long been known to be strong functions of grain size and extrinsic effects such as domain wall motion. In BaTiO3, for example, it has been observed for several decades that the piezoelectric and dielectric properties are maximized at intermediate grain sizes (≈1 μm) and different theoretical models have been introduced to describe the physical origin of this effect. Here, using in situ, high‐energy X‐ray diffraction during application of electric fields, it is shown that 90° domain wall motion during both strong (above coercive) and weak (below coercive) electric fields is greatest at these intermediate grain sizes, correlating with the enhanced permittivity and piezoelectric properties observed in BaTiO3. This result validates the long‐standing theory in attributing the size effects in polycrystalline BaTiO3 to domain wall displacement. It is now empirically established that a doubling or more in the piezoelectric and dielectric properties of polycrystalline ferroelectric materials can be achieved through domain wall displacement effects; such mechanisms are suggested for use in the design of new ferroelectric materials with enhanced properties.  相似文献   

18.
Energy harvesting from sunlight is essential in order to save fossil fuels, which are found in limited amount in the earth's crust. Photovoltaic devices converting light into electrical energy are presently made of semiconducting materials, but ferroelectrics are also natural candidates because of their internal built‐in electric field. Although they are clearly uncompetitive for mainstream applications, the possibility to output high photovoltages is making these materials reconsidered for targeted applications. However, their intrinsic properties regarding electronic transport and the origin of their internal field are poorly known. Here, it is demonstrated that under intense illumination and electric field, oxygen vacancies can be controllably generated in BiFeO3 to dramatically increase the conductance of BiFeO3 single crystals to a controllable value spanning 6 orders of magnitude while at the same time triggering light sensitivity in the form of photoconductivity, diode, and photovoltaic effects. Properties of the bulk and the Schottky interfaces with gold contacts are disentangled and it is shown that bulk effects are time dependent. The photocurrent has a direction that can be set by an applied field without changing the ferroelectric polarization direction. The self‐doping procedure is found to be essential in both the generation of electron hole pairs and the establishment of the internal field that separates them.  相似文献   

19.
Epitaxial tetragonal 425 and 611 nm thick Pb(Zr0.45Ti0.55)O3 (PZT) films are deposited by pulsed laser deposition on SrRuO3‐coated (100) SrTiO3 24° tilt angle bicrystal substrates to create a single PZT grain boundary with a well‐defined orientation. On either side of the bicrystal boundary, the films show square hysteresis loops and have dielectric permittivities of 456 and 576, with loss tangents of 0.010 and 0.015, respectively. Using piezoresponse force microscopy (PFM), a decrease in the nonlinear piezoelectric response is observed in the vicinity (720–820 nm) of the grain boundary. This region represents the width over which the extrinsic contributions to the piezoelectric response (e.g., those associated with the domain density/configuration and/or the domain wall mobility) are influenced by the presence of the grain boundary. Transmission electron microscope (TEM) images collected near and far from the grain boundary indicate a strong preference for (101)/(01) type domain walls at the grain boundary, whereas (011)/(01) and (101)/(01) are observed away from this region. It is proposed that the elastic strain field at the grain boundary interacts with the ferro‐electric/elastic domain structure, stabilizing (101)/(01) rather than (011)/(01) type domain walls, which inhibits domain wall motion under applied field and decreases non‐linearity.  相似文献   

20.
The equilibrium position of atoms in a unit cell is directly connected to crystal functionalities, e.g., ferroelectricity, ferromagnetism, and piezoelectricity. The artificial tuning of the energy landscape can involve repositioning atoms as well as manipulating the functionalities of perovskites (ABO3), which are good model systems to test this legacy. Mechanical energy from external sources accommodating various clamping substrates is utilized to perturb the energy state of perovskite materials fabricated on the substrates and consequently change their functionalities; however, this approach yields undesired complex behaviors of perovskite crystals, such as lattice distortion, displacement of B atoms, and/or tilting of oxygen octahedra. Owing to complimentary collaborations between experimental and theoretical studies, the effects of both lattice distortion and displacement of B atoms are well understood so far, which leaves us a simple question: Can we exclusively control the positions of oxygen atoms in perovskites for functionality manipulation? Here the artificial manipulation of oxygen octahedral tilt angles within multiferroic BiFeO3 thin films using strong oxygen octahedral coupling with bottom SrRuO3 layers is reported, which opens up new possibilities of oxygen octahedral engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号