首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 15 毫秒
1.
From Deep Blue to AlphaGo, artificial intelligence and machine learning are booming, and neural networks have become the hot research direction. However, due to the size limit of complementary metal–oxide–semiconductor (CMOS) transistors, von Neumann-based computing systems are facing multiple challenges (such as memory walls). As the number of transistors required by the neural network increases, the development of neural networks based on the von Neumann computer is limited by volume and energy consumption. As the fourth basic circuit element, memristor shines in the field of neuromorphic computing. The new computer architecture based on memristor is widely considered as a substitute for the von Neumann architecture and has great potential to deal with the neural network and big data era challenge. This article reviews existing materials and structures of memristors, neurophysiological simulations based on memristors, and applications of memristor-based neural networks. The feasibility and advancement of implementing neural networks using memristors are discussed, the difficulties that need to be overcome at this stage are put forward, and their development prospects and challenges faced are also discussed.  相似文献   

2.
This paper addresses future scenarios for the telecommunications field, addressing the impact of three important research trends in computer networks: Context, Sensors and Wireless Networks. The proposed scenarios clearly highlight the possible synergies between the defined areas, and describe the role of Users and Network Operators in order to achieve the described goals. The potential danger of an over-encompassing network is identified, with a brief discussion on the challenges associated to the implementation of such a knowledge-aware communications network. The paper finalizes presenting a classification on the typical scenarios to be expected, and highlighting the associated challenges. It also presents a proposal on a scalable network infrastructure for Context processing.
Diogo GomesEmail:
  相似文献   

3.
While tremendous advances have been made in dimensionality-dependent performances of inorganic-based low-dimensional nanostructures, paradigms concerning π-conjugated molecule-based supramolecular nanoassemblies are relatively fewer despite their various intrinsic advantages. It is herein reported that 0D, 1D, and 2D supramolecular nanostructures of a porphyrin, 5,10,15,20-tetrakis(4-aminophenyl)-21H,23H-porphine, with a spherical, fibrous and sheetlike architecture, respectively, could be fabricated via a reprecipitation protocol. As a typical example to demonstrate their dimensionality-dependent optoelectronic performances, it is shown that the nanomaterials could serve as photocatalysts for water remediation, where the catalytic reactivity exhibits a trend of nanofibers > nanospheres > nanosheets. The superior catalytic reactivity of the nanofibers stems from the formation of relatively well-defined J-aggregates with orderly and tightly organized chromophores, conferring them with strong photoinduced electron–hole transport and separation capability. The higher catalytic reactivity of the nanospheres than nanosheets results from their larger specific surface area, which facilitates efficient accessibility of photogenerated charge carriers, although the porphyrins therein form unspecific J-aggregates with disorderly and loosely stacked chromophores. The investigation likely initiates a simple method for π-conjugated molecule-based 0D, 1D and 2D nanoassemblies by using the same tectons, based on which the highlighted underlying scientific insights might provide useful clues for rational design of organic-based low-dimensional advanced soft materials.  相似文献   

4.
Borgonovo  F.  Capone  A.  Cesana  M.  Fratta  L. 《Wireless Networks》2004,10(4):359-366
Ad-hoc networking, though an attractive solution for many applications, still has many unsolved issues, such as the hidden-terminal problem, flexible and prompt access, QoS provisioning, and efficient broadcast service. In this paper we present a MAC architecture able to solve the above issues in environments with no power consumption limitations, such as networks for inter-vehicle communications. This new architecture is based on a completely distributed access technique, RR-ALOHA, capable of dynamically establishing, for each active terminal in the network, a reliable single-hop broadcast channel on a slotted/framed structure. Though the proposed architecture uses a slotted channel it can be adapted to operate on the physical layer of different standards, including the UMTS Terrestrial Radio Access TDD, and IEEE 802.11. The paper presents the mechanisms that compose the new MAC: the basic RR-ALOHA protocol, an efficient broadcast service and the reservation of point-to-point channels that exploit parallel transmissions. Some basic performance figures are discussed to prove the effectiveness of the protocol.  相似文献   

5.
Supramolecular bonds have been widely used for designing polymers because of their reversible nature. In contrast, utilization of their dynamic equilibrium nature to access materials of unusual mechanical properties has been poorly explored. Taking full advantage of this latter attribute requires the design of polymer networks with high contents of supramolecular bonds. In this work, polymer networks with high contents of self‐complementary hydrogen bonds (ureidopyrimidinone) are synthesized using thiol–acrylate click addition. The excellent tunability of the network allows a range of intriguing mechanical properties to be achieved including the transition from plasticity to elasticity, ultrasoft shape memory polymer, strong strain rate dependence, and high mechanical damping. Materials with such versatile dynamic behaviors may open up a range of new applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号