首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A geometrical treatment of the gauge coupling constant is proposed in terms of a generalized connection form using fibre-bundle language. This extends the notion of the coupling constant to a notion of a field. The reduction of a curvature form for the generalized connection form is described in the case of a reduction of a structure group G to a subgroup H (broken gauge symmetry), and a coupling constant for the gauge group H is constructed from the corresponding one for the gauge group G.  相似文献   

2.
A geometric model for the quantum nature of interaction fields is proposed. We utilize a trivial fibre bundle whose typical fibre has a multiconnectivity characterized by a discrete group Γ. By seeing Γ as a gauge group with global action on each fibre, we show that the corresponding field strength is non-zero only on the future part of the light cone whose vertex is at the interaction point. When the interaction is submitted to the symmetries of a Lie group G, we consider the gauge group G x Γ. The field strength of the gauge having this group includes a term expressing the quantization of the interaction field described by G. This geometric interpretation of quantization makes use of topological arguments similar to those applied to explain the Aharonov-Bohm effect. Two examples show how this interpretation applies to the cases of electromagnetic and gravitational fields.   相似文献   

3.
4.
Given a gauge theory with gauge groupG acting on a path spaceX,G andX being both infinite dimensional manifolds modelled on spaces of sections of vector bundles on a compact riemannian manifold without boundary, it is shown that when the action ofG onX is smooth, free and proper, the same ellipticity condition on an operator naturally given by the geometry of the problem yields both the existence of a principal fibre bundle structure induced by the canonical projection :XX/G and the existence of the Faddeev-Popov determinant arising in the functional quantisation of the gauge theory. This holds for certain gauge theories with anomalies like bosonic closed string theory in non-critical dimension and also holds for a class of gauge theories which includes Yang-Mills theory.  相似文献   

5.
For a model of the multidimensional universe we take a smooth manifold S which under the action of a compact Lie group G fibres into orbits of the same type G/H acquiring the structure of a fibre bundle with typical fibre G/H and base-the orbit space S/G (identified with the four-dimensional spacetime). The notion of a connection form on the fibre bundle SS/G is defined and its role for some geometrical structures on S is considered. In the framework of a theory of G-invariant tensor-type fields on S, it is shown that -being itself a field of this type-determines a dimensional reduction of the objects on S to objects on S/G.  相似文献   

6.
Noether's first theorem tells us that the global symmetry groupG r of an action integral is a Lie group of point transformations that acts on the Cartesian product of the space-time manifold with the space of states and their derivatives. Gauge theory constructs are thus required for symmetry groups that act indiscriminately on the independent and dependent variables where the group structure can not necessarily be realized as a subgroup of the general linear group. Noting that the Lie algebra of a general symmetry groupG r can be realized as a Lie algebrag r of Lie derivatives on an appropriately structured manifold,G r -covariant derivatives are introduced through study of connection 1-forms that take their values in the Lie algebrag r of Lie derivatives (operator-valued connections). This leads to a general theory of operator-valued curvature 2-forms and to the important special class of Lie connections. The latter are naturally associated with the minimal replacement and minimal coupling constructs of gauge theory when the symmetry groupG r is allowed to act locally. Lie connections give rise to the gauge fields that compensate for the local action ofG r in a natural way. All governing field equations and their integrability conditions are derived for an arbitrary finite dimensional Lie group of symmetries. The case whereG r contains the ten-parameter Poincaré group on a flat space-timeM 4 is considered. The Lorentz structure ofM 4 is shown to give a pseudo-Riemannian structure of signature 2 under the minimal replacement associated with the Lie connection of the local action of the Poincaré group. Field equations for the matter fields and the gauge fields are given for any system of matter fields whose action integral is invariant under the global action of the Poincaré group.  相似文献   

7.
We consider the Yang–Mills flow equations on a reductive coset space G/H and the Yang–Mills equations on the manifold \mathbbR×G/H{\mathbb{R}\times G/H}. On non-symmetric coset spaces G/H one can introduce geometric fluxes identified with the torsion of the spin connection. The condition of G-equivariance imposed on the gauge fields reduces the Yang–Mills equations to f4{\phi^4}-kink equations on \mathbbR{\mathbb{R}}. Depending on the boundary conditions and torsion, we obtain solutions to the Yang–Mills equations describing instantons, chains of instanton–anti-instanton pairs or modifications of gauge bundles. For Lorentzian signature on \mathbbR×G/H{\mathbb{R}\times G/H}, dyon-type configurations are constructed as well. We also present explicit solutions to the Yang–Mills flow equations and compare them with the Yang–Mills solutions on \mathbbR×G/H{\mathbb{R}\times G/H}.  相似文献   

8.
It has been proposed to abandon the requirement that parallel transporters in gauge theories are unitary (or pseudo-orthogonal). This leads to a geometric interpretation of Vierbein fields as parts of gauge fields, and non-unitary parallel transport in extra directions yields Higgs fields. In such theories, the holonomy group H is larger than the gauge group G. Here we study a one-dimensional model with fermions which retains only the extra dimension, and which is soluble in the sense that its renormalization group flow may be exactly computed, with G = SU(2) and non-compact , or G = U(2), H = GL(2,C). In all cases the asymptotic behavior of the Higgs potential is computed, and with one possible exception for G = SU(2), H = GL(2,C), there is a flow of the action from a UV fixed point which describes a SU(2)-gauge theory with unitary parallel transporters, to a IR fixed point. We explain how exponential mass ratios of fermions of different flavor can arise through spontaneous symmetry breaking, within the general framework.Received: 2 June 2003, Revised: 14 September 2004, Published online: 21 January 2005PACS: 11.10.Hi, 11.10.Kk, 11.15.Ex, 11.15.Tk, 12.15.Ff, 12.15.HhWork supported by Deutsche Forschungsgemeinschaft.  相似文献   

9.
A generalisation of the finite dimensional presentation of the Faddeev-Popov perocedure is derived, in an infinite dimensional framework for gauge theories with finite dimensional moduli space using heat-kernel regularised determinants. It is shown that the infinite dimensional Faddeev-Popov determinant is-up to a finite dimensional determinant determined by a choice of a slice-canonically determined by the geometrical data defining the gauge theory, namely a fibre bundlePP/G with structure groupG and the invariance group of a metric structure given on the total spaceP. The case of (closed) bosonic string theory is discussed.  相似文献   

10.
Agrand superspace is proposed as the phase space for gauge field theories with a fixed structure groupG over a fixed space-time manifoldM. This superspace incorporatesall principal fiber bundles with these data. This phase space is the space of isomorphism classes ofall connections onall G-principal fiber bundles overM (fixedG andM). The justification for choosing this grand superspace for the phase space is that the space-time and the structure group are determinants of the physical theory, but the principal fiber bundle with the givenG andM is not. Grand superspace is studied in terms of a natural universal principal fiber bundle overM, canonically associated withM alone, and with a natural universal connection on this bundle. This bundle and its connection are universal in the sense that all connections on allG-principal fiber bundles (anyG) overM can be recovered from this universal bundle and its universal connection by a canonical construction. WhenG is Abelian, grand superspace is shown to be an Abelian group. Various subspaces of grand superspace consisting of the isomorphism classes of flat connections and of Yang-Mills connections are also discussed.  相似文献   

11.
We consider a complex vector bundle E{\mathcal{E}} endowed with a connection A{\mathcal{A}} over the eight-dimensional manifold \mathbbR2×G/H{\mathbb{R}^2\times G/H}, where G/H = SU(3)/U(1) × U(1) is a homogeneous space provided with a never-integrable almost-complex structure and a family of SU(3)-structures. We establish an equivalence between G-invariant solutions A{\mathcal{A}} of the Spin(7)-instanton equations on \mathbbR2×G/H{\mathbb{R}^2\times G/H} and general solutions of non-Abelian coupled vortex equations on \mathbbR2{\mathbb{R}^2}. These vortices are BPS solitons in a d = 4 gauge theory obtained from N = 1{\mathcal{N} =1} supersymmetric Yang–Mills theory in ten dimensions compactified on the coset space G/H with an SU(3)-structure. The novelty of the obtained vortex equations lies in the fact that Higgs fields, defining morphisms of vector bundles over \mathbbR2{\mathbb{R}^2}, are not holomorphic in the generic case. Finally, we introduce BPS vortex equations in N = 4{\mathcal{N} =4} super Yang–Mills theory and show that they have the same feature.  相似文献   

12.
We revisit the gauging of rigid symmetries in two-dimensional bosonic sigma models with a Wess-Zumino term in the action. Such a term is related to a background closed 3-form H on the target space. More exactly, the sigma-model Feynman amplitudes of classical fields are associated to a bundle gerbe with connection of curvature H over the target space. Under conditions that were unraveled more than twenty years ago, the classical amplitudes may be coupled to the topologically trivial gauge fields of the symmetry group in a way which assures infinitesimal gauge invariance. We show that the resulting gauged Wess-Zumino amplitudes may, nevertheless, exhibit global gauge anomalies that we fully classify. The general results are illustrated on the example of the WZW and the coset models of conformal field theory. The latter are shown to be inconsistent in the presence of global anomalies. We introduce a notion of equivariant gerbes that allow an anomaly-free coupling of the Wess-Zumino amplitudes to all gauge fields, including the ones in non-trivial principal bundles. Obstructions to the existence of equivariant gerbes and their classification are discussed. The choice of different equivariant structures on the same bundle gerbe gives rise to a new type of discrete-torsion ambiguities in the gauged amplitudes. An explicit construction of gerbes equivariant with respect to the adjoint symmetries over compact simply connected simple Lie groups is given.  相似文献   

13.
A gauge theory of the spin- Heisenberg antiferromagnet (HA) on a two-dimensional square lattice is developed, which is based on the diagonal GD of the group product SO(3)×SU(2). For classical gauge fields GD is homeomorphic to SO(3). The structure of the theory is such that the quantum spin- field propagates on the background gauge field. For special gauges the excitations of the spin-field are computed and compared to the excitations of the O(3) σ model for the same gauge. The significance of negative excitational modes with respect to a semiclassical actionГsc of the spin- HA is discussed. Some properties ofГsc represented as a chiral SO(3) model in a continuum representation are worked out.  相似文献   

14.
The mathematical structure, the field equations, and fundamentals of the kinematics of generalizations of general relativity based on semisimple invariance groups are presented. The structure is that of a generalized Kaluza-Klein theory with a subgroup as the gauge group. The group manifold with its Cartan-Killing metric forms the source-free solution. The gauge fields do not vanish even in this case and give rise to additional modes of free motion. The case of the de Sitter groups is presented as an example where the gauge field is tentatively assumed to mediate a spin interaction and give rise to spin motion. Generalization to the conformal group and a theory yielding features of Dirac's large-number hypothesis are discussed. The possibility of further generalizations to include fermions are pointed out. The Kaluza-Klein theory is formulated in terms of principal fibre bundles which need not to be trivial.  相似文献   

15.
We show that three dimensional Chern-Simons gauge theories with a compact gauge groupG (not necessarily connected or simply connected) can be classified by the integer cohomology groupH 4(BG,Z). In a similar way, possible Wess-Zumino interactions of such a groupG are classified byH 3(G,Z). The relation between three dimensional Chern-Simons gauge theory and two dimensional sigma models involves a certain natural map fromH 4(BG,Z) toH 3(G,Z). We generalize this correspondence to topological spin theories, which are defined on three manifolds with spin structure, and are related to what might be calledZ 2 graded chiral algebras (or chiral superalgebras) in two dimensions. Finally we discuss in some detail the formulation of these topological gauge theories for the special case of a finite group, establishing links with two dimensional (holomorphic) orbifold models.  相似文献   

16.
A lagrangian euclidean model of Drinfeld-Sokolov (DS) reduction leading to generalW-algebras on a Riemann surface of any genus is presented. The background geometry is given by the DS principal bundleK associated to a complex Lie groupG and anSL(2,) subgroupS. The basic fields are a hermitian fiber metricH ofK and a (0, 1) Koszul gauge fieldA * ofK valued in a certain negative graded subalgebrar ofg related tos. The action governing theH andA * dynamics is the effective action of a DS field theory in the geometric background specified byH andA *. Quantization ofH andA * implements on one hand the DS reduction and on the other defines a novel model of 2d gravity, DS gravity. The gauge fixing of the DS gauge symmetry yields an integration on a moduli space of DS gauge equivalence classes ofA * configurations, the DS moduli space. The model has a residual gauge symmetry associated to the DS gauge transformations leaving a given fieldA * invariant. This is the DS counterpart of conformal symmetry. Conformal invariance and certain non-perturbative features of the model are discussed in detail.  相似文献   

17.
A unified treatment of conservation laws in general relativity, gauge theories, and elementary particle physics is formulated in the setting of principal fiber bundles. The group AUT(P) is introduced as the general gauge transformation group that covers space-time coordinate transformations. A set of master equations is exhibited for any Lagrangian density generally covariant with respect to AUT(P). The symmetry group for elementary particle theory is shown to be the structure group of the bundle only in the special case when the gauge potential is flat and the space-time is simply connected. In the general case, the symmetry group is reduced to the symmetry group of the gauge potential. This natural mechanism for a reduction of the symmetry group is speculated on as a model for spontaneous symmetry breaking.This essay received an honorable mention from the Gravity Research Foundation for the year 1981-Ed.Partially supported by a grant from the National Science Foundation.  相似文献   

18.
An extended spacetime, M4+N, is a Riemannian (4 + N)-dimensional manifold which admits an N-parameter group G of (spacelike) isometries and is such that ordinary spacetime M4 is the space M4+N/G of the equivalence classes under G-transformations of M4+N. A multidimensional unified theory (MUT) is a dynamical theory of the metric tensor on M4+N, the metric being determined from the Einstein-Hilbert action principle: in absence of matter, the Lagrangian is (essentially) the total curvature scalar of M4+N. A MUT is an extension of the Cho-Freund generalization of Jordan's five-dimensional theory. A MUT can be faithfully translated in four-dimensional language: as a theory on M4, a MUT is a gauge field theory with gauge group G. A unifying aspect of MUT's is that all fields occur as elements of the metric tensor on M4+N. When the isometry generators are subjected to strongest constraints, a MUT becomes the De Witt-Trautman generalization of Kaluza's five-dimensional theory; in four-dimensional language, this is the theory of Yang-Mills gauge fields coupled to gravity. With weaker constraints, a MUT appears to be more natural than a Yang-Mills theory as a physical realization of the gauge principle for an exact symmetry of gauged confined color. Such weakly-constrained MUT leads to bag-type models without the need for ad hoc surgery on the basic. Lagrangian. The present paper provides a detailed introduction to the formalism of multidimensional unified gauge field theory.  相似文献   

19.
Starting from a local quantum field theory with an unbroken compact symmetry group G in 1+1-dimensional spacetime we construct disorder fields implementing gauge transformations on the fields (order variables) localized in a wedge region. Enlarging the local algebras by these disorder fields we obtain a nonlocal field theory, the fixpoint algebras of which under the appropriately extended action of the group G are shown to satisfy Haag duality in every simple sector. The specifically 1+1 dimensional phenomenon of violation of Haag duality of fixpoint nets is thereby clarified. In the case of a finite group G the extended theory is acted upon in a completely canonical way by the quantum double D(G) and satisfies R-matrix commutation relations as well as a Verlinde algebra. Furthermore, our methods are suitable for a concise and transparent approach to bosonization. The main technical ingredient is a strengthened version of the split property which is expected to hold in all reasonable massive theories. In the appendices (part of) the results are extended to arbitrary locally compact groups and our methods are adapted to chiral theories on the circle. Received: 4 September 1996 / Accepted: 6 May 1997  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号