首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 A theoretical study of the reaction of CN with C2H2 + has been carried out at three levels of theory, namely G2, B3LYP and CCSD(T). The main conclusion is that this is a feasible process under interstellar conditions, but only linear species may be produced. The most favourable product is HCCCN+, followed by CCCNH+. Production of HCCNC+ is predicted to be slightly endothermic; therefore, the reaction of CN + C2H2 + may produce precursors of HC3N and C3N in space. Furthermore, the B3LYP level is found to perform rather well compared with G2 and even better than CCSD(T). Received: 14 September 1999 / Accepted: 3 February 2000 / Published online: 12 May 2000  相似文献   

2.
《Comptes Rendus Chimie》2015,18(9):935-944
Peracetylated d-glucopyranose has a high solubility in CO2 and can be a promising phase-change physical solvent or absorbent for CO2, as reported recently. However, peracetylated d-glucopyranose is unstable under acidic atmospheres, especially in sulfur-containing waste gases, and the possibly major decomposition products are 2,3,4,6-tetra-O-acetyl-d-glucopyranose, 1-thiol-d-glucopyranose tetraacetate, and 1-mercaptoethyl-d-glucopyranose tetraacetate. Therefore, it is highly interesting to investigate the interaction between CO2 and these three compounds using ab initio calculations, including geometry optimizations with HF/3-21G, B3LYP/6-31+G** and single-point energy calibration with MP2/aug-cc-pVDZ. The results indicate that the electrostatic interactions between the substrates and CO2 are mainly influenced by the interaction distance and the numbers of negative charge donors or the interacting pairs involved in the complex. It is furthermore found that ΔE increases significantly if S and O atoms could interact with CO2 simultaneously. The binding energy is irrelevant if one considers the chemical environment of the O atom (i.e. OAc, OE or OS) or the S atom (i.e. SEt or SH), and the electronegativity difference between the S and O atoms. The three substrates studied are still excellent CO2-philes, although their average ΔE (–20 kJ/mol) is slightly lower than that of peracetylated d-glucose (–22 kJ/mol), which has one more O atom that can interact with CO2. Therefore, the applications of carbohydrates can be expanded to include adsorbents for CO2, SO2 or both, and the functional groups attached to the carbohydrate can vary from those to the acetyl groups.  相似文献   

3.
 Ab initio molecular electronic structure calculations are performed for H5 + at the QCISD(T) level of theory, using a correlation-consistent quadruple-zeta basis set. Structures, vibrational frequencies and thermochemical properties are evaluated for ten stationary points of the H5 + hypersurface and are compared with previous calculations. The features of the H3 +…H2 interaction at intermediate and large intermolecular distances are also investigated. Furthermore, an analytical functional form for the potential-energy surface of H5 + is derived using a first-order diatomics-in-molecule perturbation theory approach. Its topology is found to be qualitatively correct for the short-range interaction region. Received: 15 March 2001 / Accepted: 5 July 2001 / Published online: 11 October 2001  相似文献   

4.
A systematic investigation of the M+BF4 (M = Li or NH4) ion-pair conformers has been carried out using an electrostatic docking model based on the molecular electrostatic potential topography of the free anion. This method provides a guideline for the subsequent ab initio molecular orbital calculations at the Hartree-Fock (HF) and second-order M?ller-Plesset perturbation theory (MP2) levels. It has been demonstrated that the model presented here yields more than 75% of the HF interaction energy when Li+ is the cation involved and more than 90% for the case of NH4 +. Inclusion of MP2 correlation in the HF-optimized geometries leads to stationary point geometries with different numbers of imaginary frequencies and in some places where the energies of two adjacent conformers are very close, the energy rank order is altered. The HF lowest-energy minima for the Li+BF4 and NH4 +BF4 show a bidentate and tridentate coordinating cation, respectively, whereas at the MP2 level, this ordering is reversed. Received: 9 September 1997 / Accepted: 5 November 1997  相似文献   

5.
The structures, properties and the bonding character for sub-carbonyl Si, SiCO and Si(CO)2, in singlet and triplet states have been investigated using complete-active-space self-consistent field (CASSCF), density functional theory and second-order M?ller–Plesset methods with a 6-311+G* basis set. The results indicate that the SiCO species possesses a 3ground state, and the singlet 1Δ excited state is higher in energy than the 3 state by 17.3 kcalmol−1 at the CASSCF–MP2/6-311+G* level and by 16.4 kcalmol−1 at the CCSD(T)/6-311+G* level. The SiCO ground state may be classified as silene (carbonylsilene), and its COδ− moiety possesses CO property. The formation of SiCO causes the weakening of CO bonds. The Si–C bond consists of a weak σ bond and two weak π bonds. Although the Si–C bond length is similar to that of typical Si–C bonds, the bond strength is weaker than the Si–C bonds in Si-containing alkanes; the calculated dissociation energy is 26.2 kcalmol−1 at the CCSD(T)/6-311+G* level. The corresponding bending potential-energy surface is flat; therefore, the SiCO molecule is facile. For the bicarbonyl Si systems, Si(CO)2, there exist two V-type structures for both states. The stablest state is the singlet state (1A1), and may be referred to the ground state. The triplet state (3B1) is energetically higher in energy than the 1A1 state by about 40 kcalmol−1 at the CCSD(T)/6-311 + G* level. The bond lengths in the 1A1 state are very close to those of the SiCO species, but the SiCO moieties are bent by about 10°, and the CSiC angles are only about 78°. The corresponding 3B1 state has a CSiC angle of about 54° and a SiCO angle of about 165°, but its Si–C and C–O bonds are longer than those in the 1A1 state by about 0.07 and 0.03 ?, respectively. This Si(CO)2 (1A1) has essentially silene character and should be referred to as a bicarbonyl silene. Comparison of the CO dissociation energies of SiCO and Si(CO)2 in their ground states indicates that the first CO dissociation energy of Si(CO)2 is smaller by about 7 kcalmol−1 than that of SiCO; the average one over both CO groups is also smaller than that of SiCO. A detailed bonding analysis shows that the possibility is small for the existence of polycarbonyl Si with more than three CO. This prediction may also be true for similar carbonyl complexes containing other nonmetal and non-transition-metal atoms or clusters. Received: 17 April 2002 / Accepted: 11 August 2002 / Published online: 4 November 2002 Acknowledgements. This work was supported by the National Natural Science Foundation of China (29973022) and the Foundation for Key Teachers in University of the State Ministry of Education of China. Correspondence to: Y. Bu e-mail: byx@sdu.edu.ch  相似文献   

6.
 Ab initio self-consistent-field second-order M?ller–Plesset perturbation theory computations including basis set superposition error and zero-point vibrational energy corrections have been performed on the complexation of benzene with the polar head of acetylcholine (ACh). The ACh–benzene complex is about 0.5 kcal/mol less stable than the corresponding tetramethylammonium (TMA)–benzene complex, with a structure a little distorted with respect to the latter. The electronic structure of ACh is little modified by the ligand. Overall, the replacement of one methyl group of TMA by the acetyl tail of ACh does not affect strongly the complexation to benzene, as far as the main interaction is concerned. Received: 1 April 1999 / Accepted: 19 October 1999 / Published online: 14 March 2000  相似文献   

7.
A thermodynamic study of the complexation of Cu2+, Pb2+, Zn2+ and Cd2+ ions with 1 and 2 in acetonitrile has been carried out. The study was conducted in the temperature range 283–308 K using a conductometric technique. The observed molar conductivity, Λ, was found to decrease significantly for mole ratios [L]t/[M]t less than unity in all cases. A model involving 1:1 stoichiometry has been used to analyze the conductivity data. The stability constant, K, for each 1:1 complex was determined from the conductivity data by using a nonlinear least-squares curve fitting procedure. The results show that compound 1 has no peak selectivity for any of the metal cations, while compound 2 selectively associates with Cu2+ and Pb2+. Complexes of 1 have the following stability order Pb2+ > Cu2+ > Zn2+ > Cd2+  and Pb2+ > Cu2+ for the complexes of 2. The ?H° and ?S° values for the complexation process were obtained from the slope and intercept of the Van’t Hoff plots respectively. All ?G° values were negative and were determined from the Gibbs–Helmholtz equation and the significance of these values is discussed.  相似文献   

8.
The hydrogen-abstraction reaction C2H5F+O → C2H4F+OH has been studied by a dual-level direct dynamics method. For the reaction, three reaction channels, one for α-abstraction and two for β-abstraction, have been identified. The potential-energy surface information is obtained at the MP2(full)/6-311G(d,p) and PMP2(full)/6-311G(3df,3pd) (single-point) levels. By canonical variational transition-state theory, rate constants for each reaction channel are calculated with a small-curvature tunneling correction. The total rate constant is calculated from the sum of the individual rate constants and the temperature dependence of the branching ratios is obtained over a wide range of temperatures from 300 to 5,000 K. The agreement of the rate constants with experiment is good in the experimental temperature range from 1,000 to 1,250 K. The calculated results indicate that at low temperatures α-abstraction is most likely to be the major reaction channel, while β-abstraction channels will significantly contribute to the whole reaction rate as the temperature increases. Received: 23 January 2002 / Accepted: 23 June 2002 / Published online: 20 September 2002  相似文献   

9.
10.
 Nucleophilic vinylic substitutions of 4H-pyran-4-one and 2-methyl-4H-pyran-4-one with ammonia were calculated by the B3LYP method using the 6-31G(d,p) basis set. Bulk solvent effects of aqueous solution were estimated by the polarized continuum and Poisson–Boltzmann self-consistent reaction field models using the 6-311+G(d,p) basis set. In the gas phase different mechanisms were found for the two reaction systems calculated. The reaction of 4H-pyran-4-one proceeds through enol, whereas a feasible path for the less reactive 2-methyl-4H-pyran-4-one is the mechanism through a keto intermediate. Addition of ammonia in concert with proton transfer is the rate-determining step ofthe reaction. The mechanism proceeding either by a bimolecular nucleophilic substitution (SN2) or by one involving a tetrahedral zwitterionic intermediate is shown to be unlikely in the gas phase or nonpolar solution. The effects of bulk solvent not only consist in a reduction of the various activation barriers by about 25–40 kJ mol−1 but also in a change in the reaction mechanism. Received 26 May 2002 / Accepted 26 July 2002 / Published online: 14 February 2003  相似文献   

11.
 The C3H2 isomers are important molecules in interstellar space. An understanding of their electronic structure can contribute significantly to the interpretation of interstellar spectra. In a theoretical study of the C3H2 isomers a multiconfigurational treatment is of interest because many of the isomers are carbenes or diradicals. We present such an investigation of all possible C3H2 isomers. The most important features of their electronic and vibrational spectra are calculated. Earlier theoretical studies are reviewed and it is shown that the present study yields the same order of stability for the singlet and triplet states as most previous studies. Received: 25 January 2000 / Accepted: 26 April 2000 / Published online: 18 August 2000  相似文献   

12.
 The structures and isomerization pathways of various HC2P isomers in both singlet and triplet states are investigated at the B3LYP/6-311G(d,p), QCISD/6-311G(d,p) (for isomers only) and single-point CCSD(T)/6-311G(d,p)//B3LYP/6-311G(d,p) levels. At the CCSD(T)/6-311G(d,p)//B3LYP/6-311G(d,p) level, the lowest-lying isomer is a linear HCCP structure 3 1 in the 3 state. The second low-lying isomer has a CPC ring with exocyclic CH bonding 1 5 in a singlet state at 10.5 kcal/mol. The following third and fourth low-lying isomers are a singlet bent HCCP structure 1 1 at 20.9 kcal/mol and a bent singlet HPCC structure 1 3 at 35.8 kcal/mol, respectively. Investigation of the HC2P potential-energy surface indicates that in addition to the experimentally known isomer 3 1, the other isomers 1 1, 1 3 and 1 5 also have considerable kinetic stability and may thus be observable. However, the singlet and triplet bent isomers HCPC 1 2 and 3 2 as well as the triplet bent isomer HPCC 3 3 are not only high-lying but are also kinetically unstable, in sharp contrast to the situation of the analogous HCNC and HNCC species that are both kinetically stable and that have been observed experimentally. Furthermore, the reactivity of various HC2P isomers towards oxygen atoms is briefly discussed. The results presented here may be useful for future identification of the completely unknown yet kinetically stable HC2P isomers 1 1, 1 3 and 1 5 either in the laboratory or in interstellar space. Received: 5 November 2000 / Accepted: 25 November 2001 / Published online: 8 April 2002  相似文献   

13.
Thermodynamics of the binding of Ni(2+), Cu(2+) and Zn(2+) to bacitracin A(1) was studied by capillary electrophoresis measuring the peptide effective mobility at different pH in the presence of increasing concentration of the three ligands. The affinity follows the order Ni(2+) > Cu(2+) > Zn(2+), with association constant values of (2.3 +/- 0.1)x10(4), (4.9 +/- 0.2)x10(3), and (1.5 +/- 0.1)x10(3) M(-1), respectively. The only model able to rationalize mobility data implies that metal ion binds to the P(0) peptide form. Moreover, mobility values indicated a change of bacitracin A(1) acidic properties on Ni(2+) and Cu(2+) binding, with a shift of the pK(a) of N-terminal Ile-1 from 7.6 to about 5 and of the pK(a) of the delta-amino group of D-Orn-7 from 9.7 to about 7. Even though on Zn(2+) binding a shift of the N-terminal Ile-1 pK(a) was observed, restrictions in the pH range suitable for investigation, due to precipitation phenomena, did not allow establish if the shift of D-Orn-7 lateral chain pK(a) also occurred. Nonetheless, if present, the shift should be limited to the 7.8-9.7 range. Mobility data indicated that the Stokes radius of the complexes is ca. 3 A lower than that of the free peptide. The present results indicate that metal-ion binding to bacitracin A(1) is more complex than previously assumed.  相似文献   

14.
 Hybrid potentials have become a common tool in the study of many condensed-phase processes and are the subject of much active research. An important aspect of the formulation of a hybrid potential concerns how to handle covalent bonds between atoms that are described with different potentials and, most notably, those at the interface of the quantum mechanical (QM) and molecular mechanical (MM) regions. Several methods have been proposed to deal with this problem, ranging from the simple link-atom method to more sophisticated hybrid-orbital techniques. Although it has been heavily criticized, the link-atom method has probably been the most widely used in applications, especially with hybrid potentials that use semiempirical QM methods. Our aim in this paper has been to evaluate the link-atom method for ab initio QM/MM hybrid potentials and to compare the results it gives with those of previously published studies. Given its simplicity and robustness, we find that the link-atom method can produce results of comparable accuracy to other methods as long as the charge distribution on the MM atoms at the interface is treated appropriately. Received: 27 September 2002 / Accepted: 21 October 2002 / Published online: 8 January 2003 Correspondence to: M. J. Field e-mail: mjfield@ibs.fr Acknowledgements. The authors thank the Institut de Biologie Structurale – Jean-Pierre Ebel, the Commissariat à l'Energie Atomique and the Centre National de la Recherche Scientifique for support of this work.  相似文献   

15.
 The B3LYP/6-311G(d) and CCSD(T)/6-311G(2df) (single-point) methods have been used to investigate the singlet potential energy surface of C2NP, in which seven stationary isomers and seventeen interconversion transition states are involved. At the final CCSD(T)/6-311G(2df)//B3LYP6-311G(d) level with zero-point vibrational energy correction the lowest-lying isomer is a linear NCCP followed by two linear CNCP isomers at 23.9  and CCNP at 65.8 kcal mol−1, respectively. The three isomers are kinetically very stable towards both isomerization and dissociation, and CCNP is even more kinetically stable than CNCP – by 14.3 kcal mol−1 despite its high energy. Further comparative calculations were performed at the QCISD and QCISD(T) levels with the 6-311G(d) and 6-311G(2d) basis sets to obtain more reliable structures and spectroscopy for the three isomers. The calculated bond lengths, rotational constant, and dipole moment for NCCP were in close agreement with the experimentally determined values. Finally, similarities and discrepancies between the potential energy surface of C2NP and those of the analogous species C2N2 and C2P2 were compared. The results presented in this paper might be helpful for future identification of the two still unknown yet kinetically very stable isomers CNCP and CCNP, both in the laboratory and in interstellar space. Received: 3 January 2001 / Accepted: 6 June 2001 / Published online: 30 October 2001  相似文献   

16.
The physical properties of chemicals are strongly influenced by their protonation state, affecting, for example, solubility or hydrogen-bonding characteristics. The ability to accurately calculate protonation states in the form of pK as is, therefore, desirable. Calculations of pK a changes in a series of substituted pyridines are presented. Computations were performed using both ab initio and semiempirical approaches, including free energies of solvation via reaction-field models. The selected methods are readily accessible with respect to both software and computational feasibility. Comparison of calculated and experimental pK as shows the experimental trends to be reasonably reproduced by the computations with root-mean-square differences ranging from 1.22 to 4.14 pK a units. Of the theoretical methods applied the best agreement occurred using the second-order M?ller–Plesset/6-31G(d)/isodensity surface polarized continuum solvation model, while the more computationally accessible Austin model 1/Solvent model 2 (SM2) approach yielded results similar to the ab initio methods. Analysis of component contributions to the calculated pK as indicates the largest source of error to be associated with the free energies of solvation of the protonated species followed by the gas-phase protonation energies; while the latter may be improved via the use of higher levels of theory, enhancements in the former require improvements in the solvation models. The inclusion of alternate minimum in the computation of pK as is also indicated to contribute to differences between experimental and calculated pK a values. Received: 27 April 1999 / Accepted: 27 July 1999 / Published online: 2 November 1999  相似文献   

17.
Results of ab initio self-consistent-field (SCF) and density functional theory (DFT) calculations of the gas-phase structure, acidity (free energy of deprotonation, ΔGo), and aromaticity of 1,2-diseleno-3,4-dithiosquaric acid (3,4-dithiohydroxy-3-cyclobutene-1,2-diselenone, H2C4Se2S2) are reported. The global minimum found on the potential energy surface of 1,2-diseleno-3,4-dithiosquaric acid presents a planar conformation. The ZZ isomer was found to have the lowest energy among the three planar conformers and the ZZ and ZE isomers are very close in energy. The optimized geometric parameters exhibit a bond length equalization relative to reference compounds, cyclobutanediselenone, and cyclobutenedithiol. The computed aromatic stabilization energy (ASE) by homodesmotic reaction (Eq 1) is −20.1 kcal/mol (MP2(fu)/6-311+G** //RHF/6-311+G**) and −14.9 kcal/mol (B3LYP//6-311+G**//B3LYP/6-311+G**). The aromaticity of 1,2-diseleno-3,4-dithiosquaric acid is indicated by the calculated diamagnetic susceptibility exaltation (Λ) −17.91 (CSGT(IGAIM)-RHF/6-311+G**//RHF/6-311+G**) and −31.01 (CSGT(IGAIM)-B3LYP/6-311+G**//B3LYP/6-311+G**). Thus, 1,2-diseleno-3,4-dithiosquaric acid fulfils the geometric, energetic and magnetic criteria of aromaticity. The calculated theoretical gas-phase acidity is ΔGo 1(298K)=302.7 kcal/mol and ΔGo 2(298K)=388.4 kcal/mol. Hence, 1,2-diseleno-3,4-dithiosquaric acid is a stronger acid than squaric acid(3,4-dihydroxy-3-cyclobutene-1,2-dione, H2C4O4). Received: 11 April 2000 / Accepted: 7 July 2000 / Published online: 27 September 2000  相似文献   

18.
19.
 Monte Carlo simulations have been carried out for 2-ethoxyethanol (C2E1) in isothermal-isobaric ensemble (NPT) at different temperatures and 1 atm pressure with a continuum configurational biased procedure in water and chloroform media. Hydrogen bond bridges were formed between adjacent oxygen atoms in C2E1 (CH3CH2OCH2CH2OH) through water molecules. We also found that the stable conformers of C2E1 in water and CHCl3 are different and the effect of temperature on solute-solvent interaction energies is considerable. The self-association of C2E1 in aqueous and nonaqueous media has been studied by statistical perturbation theory, and the relative free energy has been obtained at different reaction coordinates by double-wide sampling method. Two minima were found in water solvent in the potential of mean force (PMF), corresponding to the contact and solvent-separated pairs, but only one minimum was found in CHCl3 solvent corresponding to a contact pair complex. Received: 18 January 2001 / Accepted: 22 October 2001 / Published online: 21 January 2002  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号