首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The generic Bohmian trajectories are calculated for an isolated particle in an approximate energy eigenstate, for an arbitrary one-dimensional potential well. It is shown that the necessary and sufficient condition for there to be a negligible probability of the trajectory deviating significantly from the classical trajectory at any stage in the motion is that the state be a narrowly localised wave packet. The properties of the Bohmian trajectories are compared with those in the interpretation recently proposed by García de Polavieja. The reasons why the latter tend to be much more nearly classical are discussed. The implications for other trajectory interpretations are considered.  相似文献   

2.
We address the question whether Bohmian trajectories exist for all times. Bohmian trajectories are solutions of an ordinary differential equation involving a wavefunction obeying either the Schrödinger or the Dirac equation. Some trajectories may end in finite time, for example by running into a node of the wavefunction, where the law of motion is ill-defined. The aim is to show, under suitable assumptions on the initial wavefunction and the potential, global existence of almost all solutions. We provide an alternative proof of the known global existence result for spinless Schrödinger particles and extend the result to particles with spin, to the presence of magnetic fields, and to Dirac wavefunctions. Our main new result is conditions on the current vector field on configuration-space-time which are sufficient for almost-sure global existence.  相似文献   

3.
4.
5.
Bohmian mechanics provides an explanation of quantum phenomena in terms of point-like particles guided by wave functions. This review focuses on the use of nonrelativistic Bohmian mechanics to address practical problems, rather than on its interpretation. Although the Bohmian and standard quantum theories have different formalisms, both give exactly the same predictions for all phenomena. Fifteen years ago, the quantum chemistry community began to study the practical usefulness of Bohmian mechanics. Since then, the scientific community has mainly applied it to study the (unitary) evolution of single-particle wave functions, either by developing efficient quantum trajectory algorithms or by providing a trajectory-based explanation of complicated quantum phenomena. Here we present a large list of examples showing how the Bohmian formalism provides a useful solution in different forefront research fields for this kind of problems (where the Bohmian and the quantum hydrodynamic formalisms coincide). In addition, this work also emphasizes that the Bohmian formalism can be a useful tool in other types of (nonunitary and nonlinear) quantum problems where the influence of the environment or the nonsimulated degrees of freedom are relevant. This review contains also examples on the use of the Bohmian formalism for the many-body problem, decoherence and measurement processes. The ability of the Bohmian formalism to analyze this last type of problems for (open) quantum systems remains mainly unexplored by the scientific community. The authors of this review are convinced that the final status of the Bohmian theory among the scientific community will be greatly influenced by its potential success in those types of problems that present nonunitary and/or nonlinear quantum evolutions. A brief introduction of the Bohmian formalism and some of its extensions are presented in the last part of this review.  相似文献   

6.
7.
Bohmian trajectories for photons   总被引:2,自引:0,他引:2  
The first examples of Bohmian trajectories for photons have been worked out for simple situations, using the Kemmer–Duffin–Harish-Chandra formalism.  相似文献   

8.
Bohmian mechanics is a quantum theory with a clear ontology. To make clear what we mean by this, we shall proceed by recalling first what are the problems of quantum mechanics. We shall then briefly sketch the basics of Bohmian mechanics and indicate how Bohmian mechanics solves these problems and clarifies the status and the role of the quantum formalism.  相似文献   

9.
The discovery of Berry and Balazs in 1979 that the free-particle Schrödinger equation allows a non-dispersive and accelerating Airy-packet solution has taken the folklore of quantum mechanics by surprise. Over the years, this intriguing class of wave packets has sparked enormous theoretical and experimental activities in related areas of optics and atom physics. Within the Bohmian mechanics framework, we present new features of Airy wave packet solutions to Schrödinger equation with time-dependent quadratic potentials. In particular, we provide some insights to the problem by calculating the corresponding Bohmian trajectories. It is shown that by using general space–time transformations, these trajectories can display a unique variety of cases depending upon the initial position of the individual particle in the Airy wave packet. Further, we report here a myriad of nontrivial Bohmian trajectories associated to the Airy wave packet. These new features are worth introducing to the subject’s theoretical folklore in light of the fact that the evolution of a quantum mechanical Airy wave packet governed by the Schrödinger equation is analogous to the propagation of a finite energy Airy beam satisfying the paraxial equation. Numerous experimental configurations of optics and atom physics have shown that the dynamics of Airy beams depends significantly on initial parameters and configurations of the experimental set-up.  相似文献   

10.
Many recent results suggest that quantum theory is about information, and that quantum theory is best understood as arising from principles concerning information and information processing. At the same time, by far the simplest version of quantum mechanics, Bohmian mechanics, is concerned, not with information but with the behavior of an objective microscopic reality given by particles and their positions. What I would like to do here is to examine whether, and to what extent, the importance of information, observation, and the like in quantum theory can be understood from a Bohmian perspective. I would like to explore the hypothesis that the idea that information plays a special role in physics naturally emerges in a Bohmian universe.  相似文献   

11.
The problem of quantum friction in the framework of Bohmian quantum mechanics is studied. The appropriate equations for such a system is written and solved exactly for some cases. Also two approximate solutions are found which represent the transition of a system from an upper state to the ground state caused by the friction. The physical nature of these solutions are examined.  相似文献   

12.
Using the quantum kinematic approach of Mukunda and Simon, we propose a geometric phase in Bohmian mechanics. A reparametrization and gauge invariant geometric phase is derived along an arbitrary path in configuration space. The single valuedness of the wave function implies that the geometric phase along a path must be equal to an integer multiple of 2π. The nonzero geometric phase indicates that we go through the branch cut of the action function from one Riemann sheet to another when we locally travel along the path. For stationary states, quantum vortices exhibiting the quantized circulation integral can be regarded as a manifestation of the geometric phase. The bound-state Aharonov-Bohm effect demonstrates that the geometric phase along a closed path contains not only the circulation integral term but also an additional term associated with the magnetic flux. In addition, it is shown that the geometric phase proposed previously from the ensemble theory is not gauge invariant.  相似文献   

13.
We apply methods of quantum mechanics for mathematical modeling of price dynamics at the financial market. The Hamiltonian formalism on the price/price-change phase space describes the classical-like evolution of prices. This classical dynamics of prices is determined by “hard” conditions (natural resources, industrial production, services and so on). These conditions are mathematically described by the classical financial potential V(q),V(q), where q=(q1,…,qn)q=(q1,,qn) is the vector of prices of various shares. But the information exchange and market psychology play important (and sometimes determining) role in price dynamics. We propose to describe such behavioral financial factors by using the pilot wave (Bohmian) model of quantum mechanics. The theory of financial behavioral waves takes into account the market psychology. The real trajectories of prices are determined (through the financial analogue of the second Newton law) by two financial potentials: classical-like V(q)V(q) (“hard” market conditions) and quantum-like U(q)U(q) (behavioral market conditions).  相似文献   

14.
A novel solution to the quantum backreaction problem in a mixed quantum-classical simulation is provided using the Bohmian interpretation of quantum mechanics. The Bohmian backreaction is unique, computationally simple, features reaction channel branching, and easily gives the full classical limit. The Bohmian quantum-classical method is illustrated by application to a model of O2 interacting with a Pt surface.  相似文献   

15.
We discuss a recently proposed extension of Bohmian mechanics to quantum field theory. For more or less any regularized quantum field theory there is a corresponding theory of particle motion, which, in particular, ascribes trajectories to the electrons or whatever sort of particles the quantum field theory is about. Corresponding to the nonconservation of the particle number operator in the quantum field theory, the theory describes explicit creation and annihilation events: the world lines for the particles can begin and end.  相似文献   

16.
Taking a quantum corrected form of Raychaudhuri equation in a geometric background described by a Lorentz-violating massive theory of gravity, we go through investigating a time-like congruence of massive gravitons affected by a Bohmian quantum potential. We find some definite conditions upon which these gravitons are confined to diverging Bohmian trajectories. The respective behaviour of those quantum potentials are also derived and discussed. Additionally, and through a relativistic quantum treatment of a typical wave function, we demonstrate schematic conditions on the associated frequency to the gravitons, in order to satisfy the necessity of divergence.  相似文献   

17.
The property of fundamental mechanical theories which allows to treat compound objects as particles under suitable conditions is considered. It is argued that such a property, called compoundation invariance, is a nonreleasable property of any mechanical theory not declaring to which elementary constituents it applies. Compoundation invariance is discussed in the framework of Bohmian mechanics. It is found that standard Bohmian mechanics satisfies the requirement of compoundation invariance, with some reservation in the case of compound objects with spin. On the contrary that requirement is violated when additional terms are added to the standard velocity.  相似文献   

18.
Unlike the previous theoretical results based on standard quantum mechanics that established the nearly elliptical shapes for the centre-of-mass motion in Rydberg atoms using numerical simulations, we show analytically that the Bohmian trajectories in Rydberg atoms are nearly elliptical.  相似文献   

19.
We begin by giving correct expressions for the short-time action following the work Makri–Miller. We use these estimates to derive an accurate expression modulo Δt2Δt2 for the quantum propagator and we show that the quantum potential is negligible modulo Δt2Δt2 for a point source, thus justifying an unfortunately largely ignored observation of Holland made twenty years ago. We finally prove that this implies that the quantum motion is classical for very short times.  相似文献   

20.
We discuss the problem of global existence and uniqueness of Bohmian mechanics, focusing on the role played by the quantum probability flux. The relation to the self-adjointness of the Hamiltonian is alluded to.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号