首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new method for the measurement of homonuclear 3J(HNHalpha) coupling constants in 15N-labeled small proteins is described. The method is based on a modified sensitivity enhanced HSQC experiment, where the 3J(HNHalpha) couplings are multiplied in the f1-dimension. The J-multiplication of homonuclear 3J(HNHalpha) couplings is based on simultaneous incrementation of 15N chemical shift and homonuclear coupling evolution periods. The time increment for the homonuclear coupling evolution period is chosen to be a suitable multiple (2N x t1) of the corresponding increment for 15N-shift evolution. This results in the splitting of the HSQC correlation in the f1-dimension by 2N x 3J(HNHalpha). Because the pulse sequence has good sensitivity and water suppression properties, it is particularly useful for natural abundance samples.  相似文献   

2.
Suppression of long-range heteronuclear interactions in J-resolved 2D NMR facilitates separate measurements of one-bond coupling constants. Analysis of the pulse sequence describes the efficiency of bilinear rotation in the presence of long-range couplings. It also predicts intensities of possible spurious responses. Theoretical and experimental evidence confirm that long-range couplings do not represent a serious obstacle against routine applications of spin manipulations in heteronuclear 2D NMR.  相似文献   

3.
A new pulse sequence, long-range CPMG-adjusted heteronuclear single quantum coherence (LR-CAHSQC), is proposed for the determination of long-range JCH coupling constants from a long-range 1H-13C correlation experiment. The long-range heteronuclear coupling constants can be directly extracted from COSY-type antiphase peak patterns. The current approach utilizes CPMG-sequences for polarization transfer, and thus avoids the evolution of homonuclear JHH couplings, which normally may introduce abnormalities into the cross peak pattern. The differences between LR-CAHSQC and normal LR-HSQC are discussed.  相似文献   

4.
A simplified phase-cycling scheme for heteronuclear active-coupling-pattern tilting (ACT) spectroscopy is presented. It is demonstrated that the theoretically expected twofold sensitivity gain over earlier implementations can be experimentally realized. A further intensity increase by a factor of 2 is obtained with standard sensitivity-enhancement pulse-sequence elements. The HSQC-HECADE sequence presented is designed for an accurate determination of heteronuclear one-bond and, with subsequent I-spin isotropic mixing, long-range coupling constants. As an exemplary application, the determination of the (3)J(N,Hbeta) coupling constants in a peptide at natural isotope abundance is demonstrated. Additionally, a new polarization-transfer step for the long-range HSQC-HECADE experiment is proposed which avoids a fixed delay tuned to a specific coupling-constant value. Thus, the long-range correlation experiment does not require prior knowledge of the coupling constants to be measured and yields more uniform cross-peak intensity for a broad range of active coupling constants.  相似文献   

5.
We report a G-BIRD(r) modified coupled HSQC experiment for the accurate determination of one-bond heteronuclear residual dipolar couplings. The G-BIRD(r) module has been employed to refocus the long-range coupling evolution of the heteronucleus during the t1 frequency labeling period. As a result, the crosspeaks obtained are split by only the direct one-bond coupling that can be extracted by measuring simple frequency differences between singlet maxima. Additionally the decoupling of long-range multiple bond splittings leads to considerable sensitivity enhancement. The modification also has been applied in a TROSY sequence resulting in a significant sensitivity and resolution improvement.  相似文献   

6.
Two 2D J-modulated HSQC-based experiments were designed for precise determination of small residual dipolar one-bond carbon-proton coupling constants in (13)C natural abundance carbohydrates. Crucial to the precision of a few hundredths of Hz achieved by these methods was the use of long modulation intervals and BIRD pulses, which acted as semiselective inversion pulses. The BIRD pulses eliminated effective evolution of all but (1)J(CH) couplings, resulting in signal modulation that can be described by simple modulation functions. A thorough analysis of such modulation functions for a typical four-spin carbohydrate spin system was performed for both experiments. The results showed that the evolution of the (1)H-(1)H and long-range (1)H-(13)C couplings during the BIRD pulses did not necessitate the introduction of more complicated modulation functions. The effects of pulse imperfections were also inspected. While weakly coupled spin systems can be analyzed by simple fitting of cross peak intensities, in strongly coupled spin systems the evolution of the density matrix needs to be considered in order to analyse data accurately. However, if strong coupling effects are modest the errors in coupling constants determined by the "weak coupling" analysis are of similar magnitudes in oriented and isotropic samples and are partially cancelled during dipolar coupling calculation. Simple criteria have been established as to when the strong coupling treatment needs to be invoked.  相似文献   

7.
A new two-dimensional pulse sequence for accurately determining heteronuclear coupling constants is presented. It is derived from HSQC and HECADE techniques with B0 gradient coherence selection. The main feature of the proposed method is spectra with only one component of the IS doublet; i.e., the final result is equivalent to a selective broadband excitation of either Salpha or Sbeta spin states and a preservation of these states during the entire experiment. The effect is obtained by an appropriate combination of in- and antiphase coherences. It is demonstrated that heteronuclear single-bond as well as long-range coupling constants and their relative signs are readily evaluated. The proposed sequence is equally or less sensitive to a variation of heteronuclear one-bond couplings than previously published, closely related sequences. The new method is applied to a peptide sample for determination of 3JN, Hbeta.  相似文献   

8.
Density-functional theory is used to study the nuclear magnetic resonance (NMR) indirect nuclear spin-spin coupling constants in C60. Knowledge of these coupling constants may help in the analysis of future experimental NMR studies of 13C-enriched C60. At the Becke 3-parameter Lee-Yang-Parr (B3LYP) Kohn-Sham level, the one-bond couplings within pentagons and between pentagons are 62 Hz and 77 Hz, respectively; the corresponding geminal couplings are 7 Hz and 1 Hz, respectively. Except for the vicinal couplings (about 4 Hz), the long-range couplings are all 1 Hz or smaller. This is the largest theoretical calculation to date of the complete set of indirect nuclear spin-spin coupling constants of a molecular system; it has been made possible by solving the response equations only for the perturbing operators related to one nuclear magnetic moment, making the calculation feasible.  相似文献   

9.
A set of three improved two-dimensional (2D) NMR methods for measuring one-bond (15)N-(1)H coupling constants in the protein backbone is presented. They are tailored to suit the size of the TROSY effect, i.e., the degree of interference between dipolar and chemical shift anisotropy relaxation mechanisms. The methods edit 2D spectra into two separate subspectra corresponding to the two possible spin states of the coupling partner. Cross talk between the two subspectra is a second order effect in the difference between the actual coupling constants and the one used in setting the pertinent delays of the pulse sequences. This relatively high degree of editing accuracy makes the methods useful for applications to molecules subjected to weak alignment where the one-bond coupling constants are linear combinations of a scalar J and a residual dipolar contribution containing important structural information. A demonstration of the new methods is shown for the (15)N-labeled protein chymotrypsin inhibitor 2 in a lipid bicelle mixture.  相似文献   

10.
Two 2D J-modulated HSQC-based experiments were designed for precise determination of small residual dipolar one-bond carbon–proton coupling constants in 13C natural abundance carbohydrates. Crucial to the precision of a few hundredths of Hz achieved by these methods was the use of long modulation intervals and BIRD pulses, which acted as semiselective inversion pulses. The BIRD pulses eliminated effective evolution of all but 1JCH couplings, resulting in signal modulation that can be described by simple modulation functions. A thorough analysis of such modulation functions for a typical four-spin carbohydrate spin system was performed for both experiments. The results showed that the evolution of the 1H–1H and long-range 1H–13C couplings during the BIRD pulses did not necessitate the introduction of more complicated modulation functions. The effects of pulse imperfections were also inspected. While weakly coupled spin systems can be analyzed by simple fitting of cross peak intensities, in strongly coupled spin systems the evolution of the density matrix needs to be considered in order to analyse data accurately. However, if strong coupling effects are modest the errors in coupling constants determined by the “weak coupling” analysis are of similar magnitudes in oriented and isotropic samples and are partially cancelled during dipolar coupling calculation. Simple criteria have been established as to when the strong coupling treatment needs to be invoked.  相似文献   

11.
The sensitivity of cryoprobes, which are rapidly becoming available, have brought about the possibility of measurement of (13)C, (13)C coupling constants at the natural abundance of (13)C using tens rather than hundreds of milligrams of compounds. This relatively recent development lays the foundation for a more routine use of the (13)C, (13)C long-range coupling constants in the conformational analysis of molecules. We have designed novel (1)H-detected INADEQUATE experiments optimized for long-range (13)C, (13)C correlations and the measurement of long-range coupling constants. These experiments incorporate refocusing of (1)J(CH) coupling constants prior to the formation of DQ coherences and (1)H-decoupling during the long carbon-carbon evolution intervals. Such modifications significantly enhance their performance over (1)H-detected INADEQUATE experiments currently in use for mapping the one-bond (13)C, (13)C correlations. (1)H or (13)C polarization is used a starting point in long-range correlation (1)H-detected IPAP DEPT-INADEQUATE or RINEPT-INADEQUATE experiments. These correlation experiments were modified yielding in-phase (IP) or antiphase (AP) (13)C, (13)C doublets in F(1). Procedures were developed for their editing yielding accurate values of small (13)C, (13)C coupling constants. The methods are illustrated using mono- and disaccharide samples and compared with related (13)C-detected experiments by means of the measurement of interglycosidic (13)C, (13)C coupling constants of a disaccharide.  相似文献   

12.
This paper describes a number of improvements to a method, developed in this laboratory and described in J. Magn. Reson. 85 (1989) 111-113, which makes it possible to determine values of long-range 13C-1H coupling constants from heteronuclear multiple bond correlation (HMBC) spectra. First, it is shown how pulsed-field gradients can be introduced into the HMBC experiment without perturbing the form of the cross-peak multiplets; a one-dimensional version of the experiment is also described which permits the rapid measurement of a small number of couplings. Second, the experiment is modified so that one-bond and long-range cross-peaks can be separated, and so that the one-bond cross-peaks have more reliable intensities. Finally, it is shown how these one-bond cross-peaks can be used to advantage in the fitting procedure.  相似文献   

13.
Two-dimensional pulse sequences for the determination of heteronuclear long-range coupling constants are presented. The sequences are based on the HMQC/HMBC or HSQC technique with subsequent optional homonuclear I-spin transfer. However, they yield tilted cross-peak patterns displaying antiphase heteronuclear coupling constants in the projections of both dimensions, which allow accurate determination of the couplings even in cases where the linewidth is of comparable magnitude. Two characteristic pulse-sequence elements were implemented to shape theF1domain: the first element allows an arbitrary scaling of the heteronuclear coupling splittings relative to S-spin chemical-shift differences, whereas the second element achieves homonuclear broadband decoupling among the I spins in the HMQC/HMBC experiments and thus allows purely absorptive representations of such spectra. In comparison with established (ω1) X-half-filtered TOCSY spectra, the signal dispersion inF1is significantly improved and largely under experimental control. Furthermore, heteronuclear couplings of (I1, S) pairs where S is either quaternary or carries one or more I spins that do not belong to the same I-coupling network as I1can also be measured. The implementation of pulsed field gradients results in good suppression of spectral artifacts.  相似文献   

14.
One-bond heteronuclear and two-bond homonuclear residual dipolar couplings measured at methylene or amine sites can be utilized as long-range constraints in structure determination of molecules as well as to facilitate characterization of local conformation by stereospecific assignment of diastereotopic protons. We present two J-modulated HMQC type experiments to measure the one-bond heteronuclear dipolar coupling contributions of geminal protons individually. In addition two-bond homonuclear residual dipolar couplings between the diastereotopic protons are also obtained.  相似文献   

15.
The MBOB, broadband HMBC, and broadband XLOC NMR pulse sequences (A. Meissner and O. W. S?rensen (2000, Magn. Reson. Chem. 38, 981-984; 2001, 39, 49-52)) were introduced as a means of obtaining heteronuclear long-range correlation spectra with broadband excitation over an interval of heteronuclear long-range J coupling constants. However, it is not trivial what combination of delays to choose for a given purpose, particularly if one-bond and long-range correlation spectra are obtained simultaneously as in MBOB. This paper presents a way to determine sets of delays for MBOB, broadband HMBC, and broadband XLOC resolving the problem. The results tabulated suit various ranges of J coupling constants and transverse relaxation times.  相似文献   

16.
Two new NMR pulse sequences, based on intermolecular multiple-quantum coherences (iMQCs), were developed to obtain apparent J coupling constants with a scaling factor from one to infinity relative to the conventional J coupling constants. Here the apparent J coupling constants were defined as apparent peak separations in unit of Hz in a reconstructed spectrum for a coupled spin system. Except for the adjustable scaling factor for apparent J coupling constants, the sequences hold the advantage of high acquisition efficiency, and retain the spectral information such as chemical shifts, multiplet patterns, and relative peak areas under inhomogeneous fields. For spin systems with small scalar coupling constants, well-resolved J-spectra can be achieved by selecting a proper scaling factor. Theoretical predictions are in good agreement with simulation results and experimental observations.  相似文献   

17.
One-dimensional methods for the determination and assignment of heteronuclear 1H-X (X = rare spin-z) coupling constants based on the semiselective polarization transfer via INEPT pulse sequence are proposed. Here the selectivity of the polarization transfer plays a positive role with respect to the sensitivity of the measurement and purity of the observed multiplets. In nonrefocused experiments the acquired antiphase multiplets enable an unambiguous assignment of long-range couplings of a preselected proton. The analysis of such multiplets is also discussed. In the refocused version the purging pulse (INEPT+) was used to provide pure in-phase multiplets. The spectral editing technique DISCO was applied to simplify the spectra and to extract the couplings from complex multiplets. Finally, the modified INEPT experiments which combine semiselective polarization transfer with selective proton decoupling are proposed.  相似文献   

18.
With the application of RDCs in high-resolution NMR studies of macromolecules, there has been an interest in the development of accurate, sensitive methods for measuring 15N-1H and 13C-1H one-bond coupling constants. Most methods for determining these couplings are based on the measurement of the displacement between cross-peak components in J-coupled spectra. However, for large macromolecules and macromolecular complexes, these methods are often unreliable since differential relaxation can significantly broaden one of the multiplet components (i.e., the anti-TROSY component) and thereby make accurate determination of its position difficult. To overcome this problem, a J-evolved transverse relaxation optimized (JE-TROSY) method is presented for the determination of one-bond couplings that involves J-evolution of the sharpest cross-peak multiplet component selected in a TROSY experiment. Couplings are measured from the displacement of the TROSY component in the additional J-evolution dimension relative to a zero frequency origin. The JE-TROSY method is demonstrated on uniformly labeled 15N, 13C-labeled RNA and peptide samples, as well as with an RNA-protein complex, in which the protein is uniformly 15N, 13C-labeled. In all cases, resolved, sensitive spectra are obtained from which heteronuclear one-bond J-couplings could be accurately and easily measured.  相似文献   

19.
A 3D HSQC-HSQMBC experiment is proposed for increasing the separation of proton-carbon long-range correlation cross peaks, the lack of which is occasionally seen in corresponding 2D experiments. It is aimed at complex molecules with many protonated carbons exhibiting a narrow spread of 13C chemical shifts e.g., complex carbohydrates. It does not yield long-range correlation of quaternary carbons. An extra indirectly detected 1H dimension of this experiment provides additional separation of long-range correlation cross peaks by utilising the chemical shifts of protons directly attached to 13C. Evolution of single-quantum coherences throughout the entire pulse sequence ensures that the cross peaks are inphase pure absorption singlets in both indirectly detected dimensions, thus maximising the resolution and sensitivity of the experiment. Partial signal cancellation can be expected due to the antiphase character of peaks in the directly detected dimension. The intensity of cross peaks depends on the length of a single long-range evolution interval and values of both active and passive long-range coupling constants of each carbon. The 3D HSQC-HSQMBC experiment provided high quality long-range correlation spectra of a 2 mg pentasaccharide sample in 27 h. The technique can also be used for measurement of long-range heteronuclear coupling constants from pure antiphase multiplets in the directly detected dimension.  相似文献   

20.
The accurate experimental determination of dipolar-coupling constants for one-bond heteronuclear dipolar couplings in solids is a key for the quantification of the amplitudes of motional processes. Averaging of the dipolar coupling reports on motions on time scales up to the inverse of the coupling constant, in our case tens of microseconds. Combining dipolar-coupling derived order parameters that characterize the amplitudes of the motion with relaxation data leads to a more precise characterization of the dynamical parameters and helps to disentangle the amplitudes and the time scales of the motional processes, which impact relaxation rates in a highly correlated way. Here. we describe and characterize an improved experimental protocol--based on REDOR--to measure these couplings in perdeuterated proteins with a reduced sensitivity to experimental missettings. Because such effects are presently the dominant source of systematic errors in experimental dipolar-coupling measurements, these compensated experiments should help to significantly improve the precision of such data. A detailed comparison with other commonly used pulse sequences (T-MREV, phase-inverted CP, R18(2)(5), and R18(1)(7)) is provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号