首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Two-scale tests, microscale and bench scale, are conducted to analyze the flammability of a flexible polyurethane foam. Microscale tests include simultaneous thermal analysis coupled to Fourier transform infrared spectroscopy, and microscale combustion calorimeter (MCC). Evolved gas components, heat release rate per unit mass, total heat release, derived heat release capacity, and minimum ignition temperature are obtained. Bench scale tests are performed on cone calorimeter. Peak heat release rate per unit area, effective heat of combustion, minimum incident heat flux for ignition, and total heat release per unit area of different incident heat fluxes are obtained. FO-category of the PU foam is estimated by multiple discriminant function analysis based on the results of cone calorimeter test. The relationship between the two-scale tests is analyzed. The minimum ignition temperatures derived from multi heating rate MCC tests are used to predict the time to ignition and compared with the results from cone calorimeter tests. This PU foam is evaluated as a high fire hazard polymer having low heat release capacity, low ignition temperature, and short ignition time.

  相似文献   

2.
The effectiveness of treatments for the surface layer of novel foam core particleboards was evaluated by means of Cone calorimeter tests. Foam core particleboards with variations of surface layer treatment, adhesives, and surface layer thicknesses under similar processing conditions were used to produce the test specimen for the Cone calorimeter tests. Ignitability, heat release rate profile, peak of heat release rate, total heat released, effective heat of combustion, mass loss rate, gaseous emissions, and specific extinction area were measured using the cone irradiance of 50 kW m?2. Additional analysis of this data provided fuel composition information that could reveal the pyrolysis events of the composite boards. Thermocouples at various depths were used to provide further verification of pyrolysis events. The unprotected foam core panels generally had much higher heat release rates, somewhat higher heat of combustion and much higher smoke production due to the polymeric foam component of tested panels, whereas time to ignition and total heat release were not pronounced from the veneer treated boards. Adding the commercial fire retardant veneer to the face particleboard provided a dramatic improvement to the measured flammability properties. It worked sufficiently well with a 3 mm thick surface layer to improve the predicted flame spread rating of the foam core particleboards.  相似文献   

3.
Piloted ignition of woods has been commonly investigated, which is accelerated by a spark plug. Autoignition is a complex phenomenon that combustible materials are ignited by internal heating, without the spark plug. Compared with piloted ignition, process of autoignition is closer to the development of real fire. Very few studies have focused on the prediction of ignition time and average mass loss rate by autoignition. Therefore, ignition time and mass loss rate on six species of commonly used wood samples, namely pine, beech, cherry, oak, maple, and ash, were studied under external heat flux by autoignition in a cone calorimeter. Three mass loss stages of woods under external heat flux was observed. Empirical models of ignition time and average mass loss rate for woods under external heat flux were developed. These empirical models can be used not only for fire risk evaluation, but also for modeling input and validation.  相似文献   

4.

Using nanofiller additives in the polymer matrix to form nanocomposites is a potential way of reducing the flame spread and enhancing flame retardancy of polymeric materials during fire. To understand the fire reaction properties and the relative performance of flame-retardant additives in polymer during well-developed fire, neat polystyrene, polystyrene–silica and polystyrene–nanoclay (MMT) have been tested in a cone calorimeter. The neat polystyrene and the polystyrene nanocomposites have been prepared via an in situ polymerization method. An external heat flux of 50 kW m?2 was applied in the test, and parameters such as heat release rate, peak heat release rate, time to ignition, smoke toxicity, CO and CO2 yield have been investigated. Both neat polystyrene and polystyrene nanocomposites have shown the trend of a thermally thick charring polymer in the heat release rate over time data. The nanocomposites had an overall better flame retardancy than the neat polystyrene in terms of lower peak heat release rate, lower average mass loss rate and enhanced char formation. The nanocomposites had also reduced smoke emission with lower CO and CO2 yield compared to the neat polystyrene. The overall flame retardancy was enhanced as the nanofiller loading was increased for both the nanosilica and MMT nanocomposites.

  相似文献   

5.
A new flame retardant system with organic modified boron nitride (m‐BN) and intumescent flame retardant (IFR) was used in this paper, and the synergistic flame retardancy of m‐BN and IFR on natural rubber (NR) was studied. NR/IFR/m‐BN composites were characterized by X‐ray photoelectron spectroscopy(XPS), Fourier transform infrared spectrometry (FTIR), thermogravimetric analysis, UL‐94, limiting oxygen index (LOI), tensile testing, cone calorimeter testing, and thermal conductivity testing. When 4 wt% m‐BN was added, the flame retardancy and mechanical properties of the composites were improved. The LOI value of NR/IFR/4 phr m‐BN reached 26.8%, and suppressed fire spread in a UL‐94 test. Compared with pure NR, the peak heat release rate (pHRR) was reduced by 52.2%, the total heat release (THR) was reduced by 27.6%, and CO yields were reduced by 51.4%. As a key aspect of fire safety, the ignition time is effectively delayed to 23 seconds due to the increased thermal conductivity of NR/IFR/m‐BN. Since the synergistic effect of m‐BN effectively improves the flame retardancy of NR, it provides a feasible method for improving the fire safety of polymers.  相似文献   

6.
The effects of reducing specimen size on the fire behavior of polymeric materials were investigated by means of the rapid mass calorimeter, a high-throughput screening instrument. Results from the rapid mass calorimeter were compared with those from the cone calorimeter. Correlation coefficients between the different measures of each method and between the two methods are discussed to elucidate the differences and similarities in the two methods. Materials with characteristic heat release rate (HRR) curves in the cone calorimeter were evaluated in detail. The rapid mass calorimeter produces valuable and interpretable results with HRR curve characteristics similar to cone calorimeter results. Compared to cone calorimeter measurements, material savings of 96% are achieved, while maintaining the advantages of a macroscopic fire test.  相似文献   

7.
Microscale thermal analysis, bench scale cone calorimetric and real scale burning tests were conducted to evaluated fire safety performance of expanded polystyrene (EPS) foam. Simultaneous thermal analysis was used to study the thermal degradation of the foam in nitrogen, air, and oxygen environments at four heating rates. An endothermic effect is observed only in nitrogen environment, while two exothermic effects are observed in oxygen and air environments. In the nitrogen environment, the onset temperature of the endothermic effect and the endothermic peak temperature are much higher than that of the exothermic processes observed in air and oxygen environments. The Flynn–Wall–Ozawa method is utilized to analyze the degradation kinetics of the non-isothermal thermogravimetry. The activation energies calculated for an air environment, in a conversion range α = 20–70 %, are lower than those for an oxygen environment. The temperature range for this conversion range is 275–371 °C. The enthalpies of the first exothermic effect exceed that of the oxygen environment by 10–45 %. Bench scale cone calorimetric tests were carried out at incident heat flux of 25, 35, and 50 kW m?2 with two sets of cone equipment. Heat release rate, ignition time, effective heat of combustion, and critical heat flux required for ignition is obtained. In real scale burning tests, the EPS boards were ignited in sandwich structures. Fire spread speeds were derived from temperature measurement inside sandwich structure.  相似文献   

8.
Brominated flame retardant polystyrene composites were prepared by melt blending polystyrene, decabromodiphenyl oxide, antimony oxide, multi-wall carbon nanotubes and montmorillonite clay. Synergy between carbon nanotubes and clay and the brominated fire retardant was studied by thermogravimetric analysis, microscale combustion calorimetry and cone calorimetry. Nanotubes are more efficient than clay in improving the flame retardancy of the materials and promoting carbonization in the polystyrene matrix. Comparison of the results from the microscale combustion calorimeter and the cone calorimeter indicate that the rate of change of the peak heat release rate reduction in the microscale combustion calorimeter was slower than that in the cone. Both heat release capacity and reduction in the peak heat release rate in the microscale combustion calorimeter are important for screening the flame retardant materials; they show good correlations with the cone parameters, peak heat release rate and total heat released.  相似文献   

9.
This article evaluates the fire risk of petrol utilising a novel testing procedure that enables the measurement of heat release rate (HRR), specific mass loss rate and carbon monoxide (CO) yield of flammable liquids in a cone calorimeter. The testing procedure is a modification of the procedure described in ISO 5660-1:2002. The modification includes the use of a sample pool enabling the testing of flammable liquids. Pure petrol samples were tested. They were ignited with a spark igniter, without the use of a cone heater. The cone heater was removed before testing to avoid its heating by the flame and consequent heat radiation onto the tested sample surface. The average HRR was 612 kW m?2 and the maximum HRR was 842 kW m?2. The total CO yield related to mass loss was 58.6 g kg?1 and related to the effective heat of combustion was 1.48 g MJ?1. The immediate CO yield increased significantly with an increase in testing time (an increase in the depth level of liquid below the upper edge of the pool). Dependence equations of HRR and specific CO production rate (SCPR) on the specific mass loss rate were calculated from the obtained data. Substituting the specific mass loss rate of petrol (55 g m?2), which burns in an infinite diameter pool, the HRR (1,581 kW m?2) and SCPR (3.99 g m?2 s?1) were calculated for petrol pool fire under real conditions (at pool diameter larger than 1.5 m). The calculated SCPR accounted for a CO yield of 72.55 g kg?1.  相似文献   

10.
Flexible polyurethane foams (FPUF) are easy to ignite and exhibit rapid flame spread. In this paper, the fire phenomena of two standard foam formulations containing tris(1,3‐dichloro‐2‐propyl) phosphate (FR‐2) and a halogen‐freepoly (ethyl ethylene phosphate) (PNX), respectively, as flame retardants are compared. A multi‐methodological approach is proposed which combines standard fire tests as well as new investigatory approaches. The thermophysical properties of the foams were determined by thermogravimetric analysis (TG), reaction to small flames was studied by means of the limiting oxygen index (LOI) and UL 94 HBF test, and the burning behavior was investigated with the cone calorimeter. Further, temperature development in burning cone calorimeter samples was monitored using thermocouples, and rheological measurements were performed on pyrolyzed material, delivering insight into the dripping behavior of the foams. This paper gives comprehensive insight into the fire phenomena of flame‐retarded FPUFs that are driven by the two‐step decomposition behavior of the foams. LOI and UL 94 HBF tests showed a reduced flammability and reduced tendency to drip for the flame‐retarded foams. TG and cone calorimeter measurements revealed that the two‐step decomposition behavior causes two stages during combustion, namely structural collapse and pool fire. The flame‐retardant mode of action was identified to take place primarily during the foam collapse and be based mainly on flame inhibition. However, some condensed‐phase action was been measured, leading to significantly increased melt viscosity and improved dripping behavior for foams containing PNX.  相似文献   

11.

According to structural characteristics, composites are classified as laminated structure and sandwich structure. Carbon/epoxy laminate and foam core sandwich composite are the most commonly used laminate and sandwich structure material in the aircraft industry. The flammability of epoxy resins and foam core material is an inherent hazard. Many previous studies focused primarily on their mechanical properties, while the studies on the thermal and fire properties of carbon/epoxy laminate and its foam core sandwich composite have rarely conducted. Therefore, to characterize their thermal and fire properties, a comprehensive experimental investigation and theoretical analysis were carried out in this work using thermogravimetric analysis, cone calorimeter, vertical/horizontal burning tests, limiting oxygen index and scanning electron microscope tests. Several typical characteristic parameters were obtained and analyzed, such as pyrolysis temperature, heat release rate, mass loss, flaming spread rate and limiting oxygen index. These experimental data coupled with theoretical analysis can provide support for fire risk assessment and fire protection design in aircrafts. The carbon/epoxy laminate and foam core sandwich composite are both characterized as the thermally thick materials. The ignition models and mass loss rate models were obtained. Foam core material negatively affects most of the thermal and fire properties of sandwich composite, but the foam core sandwich composite has self-extinguishing behavior during horizontal burning tests, whose LOI is higher than that of carbon/epoxy laminate. Thus, an important conclusion was reached that the ignition position and flame spread direction have critical effect on the fire behavior of foam core material.

  相似文献   

12.
Synergy in flame retardancy of polyurethane foams between phosphorus-based flame retardant (aluminium phosphinate) and layered silicates has been investigated. We used pristine montmorillonite as well as ammonium modified clay (commercially available) and diphosphonium modified clay, which were synthesised by the intercalation of the quaternary diphosphonium salt according to a procedure reported here. The morphology of the foams was characterised through X-ray diffraction (XRD), while thermal properties were characterised by oxygen index test, cone calorimeter and thermogravimetric analysis (TGA). The morphological characterisation showed that pristine and diphosphonium modified clays are almost slightly intercalated, while ammonium modified one is very well dispersed. The results of thermal characterisation showed that in the presence of phosphinate enhancements of oxygen index, fire behaviour, measured by cone calorimeter, and thermal stability have been achieved. Phosphinate is therefore an efficient flame retardant for polyurethane foams and its flame retardancy action takes place in both condensed and gas phases. Pristine and ammonium modified layered silicate bring some enhancements of thermal stability while having no important effect in decreasing peak heat release rate (PHRR) and total heat evolved (THE) when used in conjunction with phosphinate; their main advantage is related to the enhancement of compactness of the char layer formed. Diphosphonium clay is instead effective in further improving the fire behaviour of the foams because of the flame retardancy action of phosphonium: both PHRR and THE were decreased. The analysis of cone calorimeter data showed that clays act through physical effect constituting a barrier at the surface which is effective in preventing or slowing the diffusion of volatiles and oxygen, while phosphinate and phosphonium are more effective owing to their combined action in both condensed and gas phases.  相似文献   

13.
A novel EVA/unmodified nano-magnesium hydroxide(NMH)/silicone rubber ternary nanocomposite was prepared by using a special compound flame retardant of NMH and silicone rubber(CFR).The flammability of the ternary composite was studied by cone calorimeter test(CCT).Synergistic effect on flame retardancy was found between silicone rubber and NMH.EVA/CFR ternary nanocomposite showed the lowest peak heat release rate(PHRR)and mass loss rate (MLR)among the samples of virgin EVA,EVA composites.The synergistic flame retardancy of silicone rubber and NMH in EVA system is attributed to the enhanced char layers in the condensed phase that prevents the heat and mass transfer in the fire.  相似文献   

14.
The combustion and melt dripping of poly(ethylene-co-butyl acrylate) (EBA), EBA blended with polypropylene (EBA-PP) and poly(ethylene-co-methacrylic acid) (EMAA), each blended with calcium carbonate and polydimethylsiloxane, were studied. In situ measurement of the temperature gradient in the cone calorimeter were combined with infrared spectroscopy measurements on specimens withdrawn and quenched at different times of the experiment. The reactions that govern the degradation at the high heating rates met in the combustion could be determined and the gap to analytical techniques such as thermogravimetry bridged. The interplay of mechanical char integrity and heat feedback by the flame determined how much time the specimen dwells in temperature range of 300-420 °C where char expansion due to calcium salt formation is effective and thereby affects the heat release rate strongly. Vertical cone calorimeter and vertical flame testing were used to assess melt dripping and char stability under flaming combustion. Plate-plate rheological measurements proofed to be of limited use to compare the effect of different degradation atmospheres on the melt viscosity. The EMAA formulation had the most effective intumescent process with a low heat release rate and good char stability even in vertical configuration. Electron-beam irradiated EMAA specimens with different levels of cross-links were tested in the cone calorimeter in order to understand the role of cross-links for the intumescent process.  相似文献   

15.
A thermally stable imidazolium organoclay was synthesized to improve the flame retardancy performance of polyamide 66 (PA 66). To enhance flame retardancy of the PA 66/organoclay nanocomposite, the thermally stable organoclay was coated with monomethylol melamine (MMM) before melt‐compounding with PA 66. Transmission electron microscopy and X‐ray diffraction results confirmed the partial exfoliation of the organoclay in the PA 66 matrix. The use of the thermally stable organoclay did not affect the thermal stability of PA 66. The cone calorimeter results showed that the PA 66/orgnaoclay nanocomposite exhibited a greatly reduced heat release rate and a longer ignition time. However, the PA 66/organoclay binary nanocomposite had no rating in the UL‐94 vertical burning test because it did not extinguish until the entire polymer component was burnt. The PA 66 nanocomposite with 15 wt% of MMM‐coated organoclay performed better in the ignition resistance test than the PA 66/organoclay nanocomposite containing 15 wt% of melamine. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
MPP/PER/APP系统阻燃的PA6/OMMT纳米复合材料的燃烧特性   总被引:3,自引:0,他引:3  
以聚磷酸蜜胺(MPP)/季戊四醇(PER)/聚磷酸铵(APP)三元膨胀型阻燃剂(IFR)(其中P/PER/三聚氰胺(MA)的摩尔比为4.1/1.0/1.1)对聚酰胺6(PA6)/有机蒙脱土(OMMT)纳米复合材料(wOMMT=0.03)进行阻燃,测定了阻燃PA6/OMMT的极限氧指数(LOI)及垂直燃烧阻燃性(UL94),以锥形量热仪(CONE)测定了材料诸多与火灾安全性有关的阻燃参数,包括释热速率、有效燃烧热、总释热量、质量损失速率、比消光面积及引燃时间等,并与PA6、阻燃PA6及PA6/OMMT进行了比较,用扫描电镜(SEM)观察了由CONE测试所得残炭的形态。  相似文献   

17.
The flame‐retardant microcapsules were successfully fabricated with an aluminum hypophosphite (AHP) core. Fourier transform infrared (FTIR) and X‐ray photoelectron spectroscopy (XPS) were used to verify that AHP was encapsulated in the microcapsules, and thermogravimetry analysis showed that microencapsulated AHP (MAHP) possessed higher thermal stability than that of AHP. Then, a flame‐retardant and smoke suppression system for silicone foams (SiFs) was obtained through a synergistic effect of MAHP and zinc borate (2ZnO·3B2O3·3.5H2O). The mechanical properties, flame retardance, and smoke suppression of SiFs with MAHP and zinc borate were tested using the tensile test, limiting oxygen index (LOI) test, UL‐94 test, and cone calorimeter test. The mechanical properties indicated that the tensile strength and elongation at break of SiFs could evidently improve with the incorporation of MAHP. Compared with pure SiF, SiF8 with 4.5‐wt% MAHP and 1.5‐wt% zinc borate could achieve an LOI value of 30.7 vol% and an UL‐94 V‐0 rating, the time to ignition amplified almost six times, the peak heat release rate and total heat release were 51.10% and 46.00% less than that of pure SiF, respectively, the fire performance index increased nearly 13 times, and the fire growth index value was only 13.18% of pure SiF. Moreover, the partial substitution of zinc borate imparted a substantial improvement in both flame retardancy and smoke suppression. Especially, the peak smoke production rate and total smoke production of SiF8 were merely 38.46% and 38.84% of pure SiF.  相似文献   

18.

The present study focuses on ignition and combustion characteristics of phenolic fiber-reinforced plastic (FRP) with different thicknesses under different external heat fluxes using cone calorimeter, which receives little attention to date. A series of parameters including ignition time, thermal thickness, mass loss factor, mass loss rate (MLR), heat release rate (HRR), total heat release (THR), fire performance index (FPI) and fire growth index (FGI) are measured or calculated. Results indicate that the ignition time increases with the thickness, but decreases with the external heat flux. Phenolic FRP with thickness of 3 mm may be considered as thermally thin material. However, phenolic FRP with thickness of 5 and 8 mm is prone to be thermally thick material. The critical heat flux, minimum heat flux and ignition temperature are deduced and validated. The thermal thickness increases with the external heat flux. Linear correlations of the thermal thickness with the ratio of specimen density and external heat flux are demonstrated and presented. The mass loss factor decreases with the thickness. Three and two peak MLRs occur in the cases of low and high external heat fluxes, respectively. The average MLR increases with the external heat flux and thickness. The average and maximum HRR increases with the external heat flux. The FGI for the maximum HRR increases with the external heat flux. Linear correlations of the average MLR, the average and maximum HRR and the FGI for the maximum HRR with the external heat flux are demonstrated and presented.

  相似文献   

19.
任杰  李建波 《高分子科学》2016,34(6):785-796
To minimize the loading level of the char-forming phosphorus based flame retardants in the poly(lactic acid) (PLA) with reduced flammability, we have developed the flame-retarded PLA nanocomposites by melt blending method incorporating organically modified montmorillonite (OMMT) and aluminium diethylphosphinate (AlPi) additives. The influence of AlPi and OMMT on flame retardancy and thermal stability of PLA was thoroughly investigated by means of the limiting oxygen index (LOI), UL94 test, cone calorimeter, X-ray diffraction (XRD), thermogravimetric analysis and scanning electronic microscopy (SEM). The experimental results show that the PLA/AlPi/OMMT system has excellent fire retardancy. The LOI value increases from 19% for pristine PLA to 28% for the flame-retarded PLA. Cone calorimeter analysis of the PLA/AlPi/OMMT exhibits a reduction in the peak heat release rate values by 26.2%. Thermogravimetric analysis and SEM of cone calorimeter residues indicate that OMMT significantly enhances the thermal stability, promotes char-forming and suppresses the melt dripping. The research of this study implies that the combining of the flame retardant and organoclay results in a synergistic effect. In addition, the flame-retarded PLA nanocomposite also exhibits notable increase in the impact strength and the elongation at break.  相似文献   

20.
In this paper, fumaric acid (FA) which was a new type of environmental and low‐cost flame retardant was applied for thermoplastic polyurethane elastomer (TPU). The flame‐retardant properties of TPU were tested using limiting oxygen index, cone calorimeter test, smoke density test, and thermogravimetric/Fourier transform infrared spectroscopy. It has been proved that FA could improve the difficulty of the ignition of the sample; the limiting oxygen index value of the sample (FA‐4) increased by 29.7% when 2.0 wt% FA was added to TPU. The cone calorimeter test showed that FA can greatly reduce heat release and smoke production during the combustion process of TPU composites. For example, compared with the pure TPU, the peak heat release rate and total smoke release of the sample (FA‐4) with 2.0 wt% FA were decreased by 50.8% and 51.5% respectively. The results of smoke density test showed that the luminous flux of the samples contained 0.5 wt% FA was increased by 79.2% compared with the pure TPU. The TG results revealed that the sample of FA‐4 had higher char residue content compared with the sample of TPU. The results of thermogravimetric/Fourier transform infrared spectroscopy proved that FA could decrease the initial decomposition temperature for TPU composites and increase the release of CO2 and H2O. All results of test illustrated that FA had good flame‐retardant effect on TPU.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号