首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The molecular structure, heats of formation, energetic properties, strain energy and thermal stability for a series of substituted difurazano[3,4-b:3′,4′-e]piperazines and their analogues were studied using density functional theory. The results show that it is a useful way to increase the heat of formation values of energetic compounds by incorporating a five- or six-membered aromatic heterocycle to construct a fused ring system. The calculated detonation properties reveal that introducing one heterocycle to construct a fused ring structure greatly enhances their detonation properties. The substitution of the –NF2, –NO2 or –NHNO2 group is very useful for enhancing the detonation performance for the substituted derivatives. According to molecular structure and natural bond orbital analysis, the introduction of the –NO2, –NF2 or –NHNO2 group decreases the stability of the substituted derivative. There is a weak N–NO2 bond conjugation in the NO2-substituted derivatives. An analysis of the bond dissociation energies for several relatively weak bonds suggests that all the unsubstituted derivatives have good thermal stability, but the substitution of –NO2 or –NF2 remarkably decreases their stability. Considering the detonation performance and thermal stability, eight compounds may be considered as the potential candidates of high-energy density materials with less sensitivity.  相似文献   

2.
This study presents a new simple model for predicting activation energy of the thermolysis of various classes of energetic compounds. The new model can help to elucidate the cause of thermal stability and, therefore, shelf life of some energetic compounds. The methodology assumes that activation energy of an energetic compound with general formula C a H b N c O d can be expressed as a function of optimized elemental composition as well as the contribution of specific molecular structural parameters. The new correlation has the root mean square and the average deviations of 9.8 and 7.4 kJ mol?1, respectively, for 86 energetic compounds with different molecular structures. The proposed new method is also tested for 20 energetic compounds, which have complex molecular structures, e.g. 4,10-dinitro-2,6,8,12-tetraoxa-4,10-diazaisowurtzitane, 2,4,6-tris(2,4,6-Trinitrophenyl)-1,3,5-triazine and 1-(2,4,6-Trinitrophenyl)-5,7-dinitrobenzotriazole.  相似文献   

3.
Spiro scaffolds are being increasingly utilized in drug discovery due to their inherent three‐dimensionality and structural variations, resulting in new synthetic routes to introduce spiro building blocks into more pharmaceutically active molecules. Multicomponent cascade reactions, involving the in situ generation of carbonyl ylides from α‐diazocarbonyl compounds and aldehydes, and 1,3‐dipolar cycloadditon with 3‐arylideneoxindoles gave a novel class of dispirooxindole derivatives, namely 1,1′′‐dibenzyl‐5′‐(4‐chlorophenyl)‐4′‐phenyl‐4′,5′‐dihydrodispiro[indoline‐3,2′‐furan‐3′,3′′‐indoline]‐2,2′′‐dione, C44H33ClN2O3, (I), 1′′‐acetyl‐1‐benzyl‐5′‐(4‐chlorophenyl)‐4′‐phenyl‐4′,5′‐dihydrodispiro[indoline‐3,2′‐furan‐3′,3′′‐indoline]‐2,2′′‐dione, C39H29ClN2O4, (II), 1′′‐acetyl‐1‐benzyl‐4′,5′‐diphenyl‐4′,5′‐dihydrodispiro[indoline‐3,2′‐furan‐3′,3′′‐indoline]‐2,2′′‐dione, C39H30N2O4, (III), and 1′′‐acetyl‐1‐benzyl‐4′,5′‐diphenyl‐4′,5′‐dihydrodispiro[indoline‐3,2′‐furan‐3′,3′′‐indoline]‐2,2′′‐dione acetonitrile hemisolvate, C39H30N2O4·0.5C2H3N, (IV). All four compounds exist as racemic mixtures of the SSSR and RRRS stereoisomers. In these structures, the two H atoms of the dihydrofuran ring and the two substituted oxindole rings are in a trans orientation, facilitating intramolecular C—H...O and π–π interactions. These weak interactions play a prominent role in the structural stability and aid the highly regio‐ and diastereoselective synthesis. In each of the four structures, the molecular assembly in the crystal is also governed by weak noncovalent interactions. Compound (IV) is the solvated analogue of (III) and the two compounds show similar structural features.  相似文献   

4.
《Chemical physics letters》1999,291(5-6):379-382
Three novel compounds, trans-2-[p-(N-ethyl-N-(hydroxyethyl)amino)styryl]-N-methylbenzothiazolium iodide (1), trans-2-[p-(N-ethyl-N-(hydroxyethyl)amino)styryl]-1′,3′,3′-trimethylindolium iodide (2), and trans-2-[p-(N,N-dimethylamino)styryl]-1′,3′,3′-trimethylindolium iodide (3), were synthesized and their two-photon induced fluorescence behavior was studied. Under excitation by 1064 nm laser irradiation, the solutions of these compounds exhibit two-photon induced fluorescence with λmax at 639, 666 and 665 nm for 1, 2 and 3 respectively.  相似文献   

5.
A new family of high‐nitrogen compounds, that is, polyazido‐ and polyamino‐substituted N,N′‐azo‐1,2,4‐triazoles, were synthesized in a safe and convenient manner and fully characterized. The structures of 3,3′,5,5′‐tetra(azido)‐4,4′‐azo‐1,2,4‐triazole ( 15 ) and 3,3′,5,5′‐tetra(amino)‐4,4′‐azo‐1,2,4‐triazole ( 23 ) were also confirmed by X‐ray diffraction. Differential scanning calorimetry (DSC) was performed to determine their thermal stability. Their heats of formation and density, which were calculated by using Gaussian 03, were used to determine the detonation performances of the related compounds (EXPLO 5.05). The heats of formation of the polyazido compounds were also derived by using an additive method. Compound 15 has the highest heat of formation (6933 kJ kg?1) reported so far for energetic compounds and a detonation performance that is comparable to that of octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocine (HMX), while compound 23 has a decomposition temperature of up to 290 °C.  相似文献   

6.
In this work, the experimental synthesized bipyridines azo-bis(2-pyridine),4,4′-dimethyl-3,3′-dinitro-2,2′-azobipyridine, and N,N′-bis(3-nitro-2-pyridinyl)-methane-diamine and a set of designed bipyridines that have similar frameworks but different linkages and substituents were studied theoretically at the B3LYP/6-31G* level of density functional theory. The gas-phase heats of formation were predicted based on the isodesmic reactions, and the condensed-phase heats of formation and heats of sublimation were estimated in the framework of the Politzer approach. The crystal densities have been computed from molecular packing and results show that incorporation of –N=N–, –N=N(O)–, –CH=N–, and –NH–NH– into bipyridines is more favorable than –CH=CH– and –NH–CH2–NH– for increasing the density. The predicted detonation velocities (D) and detonation pressures (P) indicate that –NH2, –NO2, and –NF2 can enhance the detonation performance, and –NO2 and –NF2 are more favorable. Introducing –N=N–, –N=N(O)–, and –NH–NH– bridge groups into bipyridines is also favorable for improving their detonation performance. The oxidation of pyridine N always but that of –N=N– bridge does not always improve the detonation properties. E4–O, the derivative with –N=N– bridge and two –NF2 substituent groups, has the largest D (9.90 km/s) and P (47.47 GPa). An analysis of the bond dissociation energies shows that all derivatives have good thermal stability.  相似文献   

7.
In the structures of 3,3,3′,3′‐tetraethyl‐1,1′‐(propane‐1,3‐diyldicarbonyl)bis(thiourea), C15H28N4O2S2, (I), 3,3,3′,3′‐tetraethyl‐1,1′‐(butane‐1,4‐diyldicarbonyl)bis(thiourea), C16H30N4O2S2, (II), and 3,3,3′,3′‐tetrabutyl‐1,1′‐(hexane‐1,6‐diyldicarbonyl)bis(thiourea), C26H50N4O2S2, (III), compound (I) displays resonance‐assisted hydrogen bonding, (II) exhibits an inversion centre, and both (II) and (III) are characterized by intermolecular hydrogen bonds between the carbonyl O atoms and thioamide H atoms, leading to chains of hydrogen‐bonded molecules throughout the structures. The accurate structural data for these molecules is expected to assist in molecular modelling and other studies currently in progress.  相似文献   

8.
The crystal and molecular structures of two para‐substituted azobenzenes with π‐electron‐donating –NEt2 and π‐electron‐withdrawing –COOEt groups are reported, along with the effects of the substituents on the aromaticity of the benzene ring. The deformation of the aromatic ring around the –NEt2 group in N,N,N′,N′‐tetraethyl‐4,4′‐(diazenediyl)dianiline, C20H28N4, (I), may be caused by steric hindrance and the π‐electron‐donating effects of the amine group. In this structure, one of the amine N atoms demonstrates clear sp2‐hybridization and the other is slightly shifted from the plane of the surrounding atoms. The molecule of the second azobenzene, diethyl 4,4′‐(diazenediyl)dibenzoate, C18H18N2O4, (II), lies on a crystallographic inversion centre. Its geometry is normal and comparable with homologous compounds. Density functional theory (DFT) calculations were performed to analyse the changes in the geometry of the studied compounds in the crystalline state and for the isolated molecules. The most significant changes are observed in the values of the N=N—C—C torsion angles, which for the isolated molecules are close to 0.0°. The HOMA (harmonic oscillator model of aromaticity) index, calculated for the benzene ring, demonstrates a slight decrease of the aromaticity in (I) and no substantial changes in (II).  相似文献   

9.
Density functional theory method was used to study the heats of formation (HOFs), electronic structure, energetic properties, and thermal stability for a series of 1,2,3,4-tetrazine-1,3-dioxide derivatives with different substituents and bridge groups. It is found that the groups –NO2, –C(NO2)3, and –N=N– play a very important role in increasing the HOFs of the derivatives. The effects of the substituents on the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels and HOMO–LUMO gaps are coupled to those of different substituents and bridges. The calculated detonation velocities and pressures indicate that the group –NO2, –NF2, –ONO2, –C(NO2)3, or –NH– is an effective structural unit for enhancing the detonation performance for the derivatives. An analysis of the bond dissociation energies for several relatively weak bonds indicates that incorporating the groups –NO2, –NF2, –ONO2, –C(NO2)3, and –N=N– into parent ring decreases their thermal stability. Considering the detonation performance and thermal stability, 18 compounds may be considered as the target compounds holding the greatest potential for synthesis and use as high-energy density compounds. Among them, the oxygen balances of four compounds are equal to zero. These results provide basic information for the molecular design of the novel high-energy compounds.  相似文献   

10.
The molecular structures of trichlorido(2,2′:6′,2′′‐terpyridine‐κ3N,N′,N′′)gallium(III), [GaCl3(C15H11N3)], and tribromido(2,2′:6′,2′′‐terpyridine‐κ3N,N′,N′′)gallium(III), [GaBr3(C15H11N3)], are isostructural, with the GaIII atom displaying an octahedral geometry. It is shown that the Ga—N distances in the two complexes are the same within experimental error, in contrast to expected bond lengthening in the bromide complex due to the lower Lewis acidity of GaBr3. Thus, masking of the Lewis acidity trends in the solid state is observed not only for complexes of group 13 metal halides with monodentate ligands but for complexes with the polydentate 2,2′:6′,2′′‐terpyridine donor as well.  相似文献   

11.
The substitution effect of various functional groups such as –NO2, –CN, –N3, –NF2, and –NH2 on the density of tetrazolium nitrate salts is investigated through multiple linear regression method. The methodology of this work introduces a new model, which related density of tetrazolium nitrate salts to the number of fluorine and nitrogen atoms, the presence of NF2 groups, NO2 groups, as well as CH3 groups in the structural formula. The new reliable correlation shows that the NF2 and NO2 group can cause increasing the density of tetrazolium nitrate salts, especially NO2, whereas the CH3 group can decrease their density. The new proposed relationship has good reliability and predictability, so it can be used to design new rich nitrogen compounds based on tetrazolium nitrate salts as green energetic materials. These results are also tested for N,N′‐azo‐1,2,4‐triazolium nitrate salts, which is caused to derive another correlation. This correlation shows that the presence of NF2 functional groups increases the density of N,N′‐azo‐1,2,4‐triazolium nitrate salts as well as the value of nO/nC.  相似文献   

12.
Approaches to the synthesis of organic aurophilic ligands, viz., sulfur-containing 2,2′:6′,2’-terpyridine derivatives, were developed. Complexation reactions of the terpyridine ligands having thiophenol, diaryl disulfide, and alkyl aryl sulfide fragments with Co ii , Ni ii , and Rh iii salts were studied. The structures of the coordination compounds obtained were established based on the elemental analysis data, density functional calculations, and electron spectroscopy. The structure of the complex of 4′-(4-methylsulfanyl)-2,2′:6′,2"-terpyridine with Ni(BF4)2 was also established by X-ray diffraction analysis. A method was proposed for the preparation of gold nanoparticle dimeric aggregates via coordination interactions of the ligands adsorbed on the gold nanoparticle surface with transition metal ions. A degree of nanoparticle aggregation upon their reaction with solutions of complex compounds of aurophilic nitrogen-containing ligands was determined by the concentration of the solution of the complex used.  相似文献   

13.
The Et2O‐soluble fraction from the bark of Magnolia kobus led to the isolation of two new lignans, (+)‐(7α,7′α,8α,8′α)‐3′,4,4′,5,5′‐pentamethoxy‐7,9′: 7′,9‐diepoxylignan‐3‐ol ( 1 ) and (+)‐(7α,7′α,8α,8′α)‐4,5‐dimethoxy‐3′,4′‐(methylenedioxy)‐7,9′: 7′,9‐diepoxylignan‐3‐ol ( 2 ), along with five known lignans 3 – 7 . Their structures were established on the basis of various spectroscopic analyses including 1D‐ (1H, 13C, and DEPT) and 2D‐NMR (COSY, NOESY, HMQC, and HMBC) and by comparison of their spectral data with those of related compounds.  相似文献   

14.
Reactions of N-substituted succinimides with the Vilsmeier reagent leading to isomeric diformyldichloropyrroles were studied. The latter compounds were used for the synthesis of N-substituted dithieno[2,3-b:2′,3′-d]pyrrole and dithieno[2,3-b:3′,2′-d]pyrrole and their bromo derivatives as well. Dimers of N-alkyldithieno[2,3-b:2′,3′-d]pyrrole, novel promising materials for organic semiconductors, were synthesized.  相似文献   

15.
Crystal structures are reported for three substituted 1H‐imidazole‐4,5‐dicarbonitrile compounds used as catalysts for the coupling reaction of nucleoside methyl phosphonamidites, namely 2‐(3′,5′‐dimethylbiphenyl‐2‐yl)‐1H‐imidazole‐4,5‐dicarbonitrile, C19H14N4, (I), 2‐(2′,4′,6′‐trimethylbiphenyl‐2‐yl)‐1H‐imidazole‐4,5‐dicarbonitrile, C20H16N4, (II), and 2‐[8‐(3,5‐dimethylphenyl)naphthalen‐1‐yl]‐1H‐imidazole‐4,5‐dicarbonitrile, C23H16N4, (III). The asymmetric unit of (I) contains two independent molecules with similar conformations. There is steric repulsion between the imidazole group and the terminal phenyl group in all three compounds, resulting in the nonplanarity of the molecules. The naphthalene group of (III) shows significant deviation from planarity. The C—N bond lengths in the imidazole rings range from 1.325 (2) to 1.377 (2) Å. The molecules are connected into zigzag chains by intermolecular N—H...Nimidazole [for (I)] or N—H...·Ncyano [for (II) and (III)] hydrogen bonds.  相似文献   

16.
Hexa‐peri‐hexabenzocoronene (HBC) is a discotic‐shaped conjugated molecule with strong π–π stacking property, high intrinsic charge mobility, and good self‐assembly properties. For a long time, however, organic photovoltaic (OPV) solar cells based on HBC demonstrated low power conversion efficiencies (PCEs). In this study, two conjugated terpolymers, poly[N‐9′‐heptadecanyl‐2,7‐carbazole‐alt‐5,5′‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole)] (PCDTBT)‐ 5 HBC and PCDTBT‐ 10 HBC, were synthesized by incorporating different amounts of HBC as the third component into poly[N‐9′‐heptadecanyl‐2,7‐carbazole‐alt‐5,5′‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole)] (PCDTBT) through Suzuki coupling polymerization. For comparison, the donor–acceptor (D –A) conjugated dipolymer PCDTBT was also synthesized to investigate the effect of HBC units on conjugated polymers. The HBC‐containing polymers exhibited higher thermal stabilities, broader absorption spectra, and lower highest‐occupied molecular orbital (HOMO) energy levels. In particular, the field‐effect mobilities were enhanced by more than one order of magnitude after the incorporation of HBC into the conjugated polymer backbone on account of increased interchain π–π stacking interactions. The bulk heterojunction (BHJ) polymer solar cells (PSCs) fabricated with the polymers as donor and PC71BM as acceptor demonstrated gradual improvement of open‐circuit voltage (VOC) and short‐circuit current (JSC) with the increase in HBC content. As a result, the PCEs were improved from 3.21 % for PCDTBT to 3.78 % for PCDTBT‐ 5 HBC and then to 4.20 % for PCDTBT‐ 10 HBC.  相似文献   

17.
Newly designed 2H‐benzimidazole derivatives which have solubility groups at 2‐position have been synthesized and incorporated into two highly soluble carbazole based alternating copolymers, poly[2,7‐(9‐(1′‐octylnonyl)‐9H‐carbazole)‐alt‐5,5‐(4′,7′‐di(thien‐2‐yl)‐2H‐benzimidazole‐2′‐spirocyclohexane)] (PCDTCHBI) and poly[2,7‐(9‐(1′‐octylnonyl)‐9H‐carbazole)‐alt‐5,5‐(4′,7′‐di(thien‐2‐yl)‐2H‐benzimidazole‐2′‐spiro‐4′′‐((2′′′‐ethylhexyl)oxy)‐cyclohexane)] (PCDTEHOCHBI) for photovoltaic application. These alternating copolymers show low‐band gap properties caused by internal charge transfer from an electron‐rich unit to an electron‐deficient moiety. HOMO and LUMO levels are –5.53 and –3.86 eV for PCDTCHBI, and –5.49 and –3.84 eV for PCDTEHOCHBI, respectively. Optical band gaps of PCDTCHBI and PCDTEHOCHBI are 1.67 and 1.65 eV, respectively. The new carbazole based the 2H‐benzimidazole polymers show 0.11–0.13 eV lower values of band gaps as compared to that of carbazole based benzothiadiazole polymer, poly[N‐9′‐heptadecanyl‐2,7‐carbazole‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole)] (PCDTBT), while keeping nearly the same deep HOMO levels. The power conversion efficiencies of PCDTCHBI and PCDTEHOCHBI blended with [6,6]phenyl‐C71‐butyric acid methyl ester (PC71BM) are 1.03 and 1.15%, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
Two new coumarin derivatives, 7-(N,N′-diethylamino)-3-(4-hydroxyphenyl)-coumarin and 7-(N,N′-diethylamino)-3-(4-bromophenyl)-coumarin, were synthesized successfully. Their structures were verified by single crystal X-ray crystallography. The UV–vis absorption and fluorescence of the compounds were discussed. The compounds exhibit strong blue emission under ultraviolet light excitation. The molecular structures, the lowest energy transitions and the UV–vis spectra of 7-(N,N′-diethylamino)-3-(4-hydroxyphenyl)-coumarin and 7-(N,N′-diethylamino)-3-(4-bromophenyl)-coumarin have been studied with density functional theory (DFT) and time-dependent density functional theory (TD-DFT) at B3LYP/6-31G(d) level.  相似文献   

19.
An efficient method has been developed for the synthesis of 7′-arylspiro{adamantane-[2,3′]-(1′,2′,4′,5′,7′-tetraoxazocanes)} by the ring transformation reaction of spiro{adamantane-[2,3’]-(1′,2′,4′,5′,7′-pentaoxacane)} with arylamines in the presence of Sm(NO3)3·6H2O as the catalyst. NMR signals of the synthesized compounds were assigned considering the conformation dynamics of the tetraoxazocane ring with two rigid peroxide bonds. The structures of some of the compounds were studied by X-ray diffraction. The thermal stability of single crystal was determined by DSC method. Compounds 7′-(2-methylphenyl)spiro{adamantane-[2,3′]-(1′,2′,4′,5′,7′-tetraoxazocane)} and 7′-(4-fluorophenyl)spiro{adamantane-[2,3′]-(1′,2′,4′,5′,7′-tetraoxazocane)} exhibited cytotoxicity towards cancer cells.  相似文献   

20.
Three new chalcones, 3′‐carboxymethyl‐4,2′‐dihydroxy‐4′‐methoxychalcone ( 1 ), (±)‐4,2′,4′‐trihydroxy‐3′‐[(3‐hydroxy‐2,2‐dimethyl‐6‐methylenecyclohexyl)methyl]chalcone ( 2 ), and 2′′‐hydroxyangelichalcone ( 3 ), were isolated from the aerial parts of Angelica keiskei (Umbelliferae) together with five known compounds, artocarmitin A ( 4 ), (+)‐cis‐(3′R,4′R)‐methylkhellactone ( 5 ), (?)‐trans‐(3′R,4′S)‐methylkhellactone ( 6 ), 3,4‐dihydroxanthotoxin ( 7 ), and (Z)‐p‐coumaryl alcohol ( 8 ). The known compounds 4  –  8 were identified from Akeiskei for the first time. The structures of 1  –  3 were elucidated by interpreting spectroscopic data including 1D‐ and 2D‐NMR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号