首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper deals with the study of phase transformation temperatures of Fe (Fe–C–O) based metallic alloys. Six model alloys with graded carbon and oxygen content were used for experimental investigation. Low-temperature region (<1000 °C) was the investigated area. Phase transformation temperatures were obtained using Differential thermal analysis and Setaram Setsys 18TM laboratory system. Controlled heating was conducted at the rates of 2, 4, 7, 10, 15, 20 °C min?1. Region of eutectoid transformation (Feα(C) + Fe3C → Feγ(C)), alpha–gamma (Feα(C) → Feγ(C)) and transformation Feα(O) + Fe0.92O → Feγ(O) + Fe0.92O was studied. New original data (phase transformation temperatures) were obtained in this study. The relationship between shift of phase transformation temperatures and chemical composition (mainly carbon and oxygen content) is investigated in this paper. To achieve good approximation to the equilibrium conditions, the extrapolation of the obtained phase transformation temperatures to the zero heating rate was performed. The influence of experimental conditions (heating rate) on temperatures of phase transformations was studied as well. Comparison of the obtained experimental data with the data presented in the accessible literature and IDS calculations (Solidification Analysis Package) was carried out. It follows from literature search that there is a lack of thermo-physical and thermo-dynamical data on Fe–C–O system.  相似文献   

2.

Hydrogen electrosorption into Pd-rich (>80 at.% Pd in the bulk) Pd–Rh alloys has been studied in acidic solutions (0.5 M H2SO4) using cyclic voltammetry and chronoamperometry. The influence of temperature (in the range between 283 and 328 K), electrode potential and alloy bulk composition on hydrogen electrosorption properties of Pd–Rh alloys is presented. It has been found that the additive of Rh to Pd–Rh alloys increases the maximum hydrogen solubility (for Rh bulk content below 10 at.%), decreases the potential of absorbed hydrogen oxidation peak and decreases the potential of the α → β phase transition. Increasing temperature decreases the potential of absorbed hydrogen oxidation peak, the maximum hydrogen solubility, and the potential of the α → β phase transition. The amounts of electrosorbed hydrogen for α- and β-phase boundaries, i.e., αmax and βmin, have been determined from the integration of the initial parts of current–time responses in hydrogen absorption and desorption processes. The H/M ratio corresponding to αmax increases with increasing Rh content, while for βmin a maximum of H/M ratio is observed for the alloys containing ca. 95% Rh.

  相似文献   

3.
Uranium–zirconium, uranium niobium, and uranium–zirconium–niobium alloys were synthesized by the arc melting technique and their phase transition temperatures were determined using a high temperature calorimeter. Heat capacities of U–7 wt%Zr, U–7 wt%Nb, U–5 wt%Zr–2 wt%Nb, U–3.5 wt%Nb–3.5 wt%Zr, and U–2 wt%Zr–5 wt%Nb were measured using a differential scanning calorimeter in the temperature range 303–921 K. A set of self-consistent thermodynamic functions such as entropy, enthalpy, and Gibbs energy function data for these binary and ternary alloys were reported for the first time using heat capacity data obtained in this study and required literature data.  相似文献   

4.
The results of calorimetric study of binary Al–Zn system done according to the Oelsen thermodynamic method are presented in this paper. Main thermodynamic properties, including activities, activity coefficients, partial/integral molar Gibbs excess, and mixing energies were determined at 1,000 K. Positive deviation from Raoult law was noticed, with minimal values of ΔG M about ?3 kJ mol?1 and maximal values of ΔG E about +2 kJ mol?1. The energetics of mixing in liquid Al–Zn alloys has been analyzed through the study of concentration fluctuation in the long-wavelength limit, and weak affinity between Al and Zn atoms in the system was observed. Differential thermal analysis and light optic microscopy were applied in the frame of characterization of investigated binary alloys and phase diagram examination, and the results obtained were in accordance with available literature data.  相似文献   

5.
The γγ′ Co-based superalloys are newly developed class of refractory alloys which may replace commercial Ni-based superalloys owing to their favorable properties at high temperature. In case of new Co-based superalloys, the heat treatment aims to obtain microstructure composed of appropriate volume fraction of small cuboidal γ′-Co3(Al,W) precipitates within the γ-Co matrix. However, due to a high tendency to interdendritic segregations of alloying elements, the alloys based on Co–Al–W system should be normally homogenized before further steps of heat treatment (solutionizing and aging). In this study, thermal analysis was applied for determination of temperature range for primary heat treatment of the Co–9Al–9W (at.%). The differential thermal analysis (DTA) measurements were carried out on the thermal analyzer NETZSCH STA 449 F3 Jupiter. On the base of obtained results, respectively, solvus of γ′ phase and solidus temperatures were determined, as well as the thermal range of Co3W (DO19) phase precipitation. As a consequence, the heat treatment without homogenizing (only solution and aging) was proposed as a most suitable way to obtain beneficial microstructure.  相似文献   

6.
Titanium and its alloys are used in production of implants such as knee and hip prostheses due to their superior properties. Ti–Nb–Zr ternary alloys are preferred over other metallic implant materials due to the presence of non-toxic elements, high corrosion resistance, good biocompatibility, and proper mechanical properties. The aim of this work is to investigate the effect of zirconium addition on α → β phase transformation, microstructure, and mechanical behavior of Ti–16Nb alloy. In doing so, Ti–16Nb–xZr (x: 0, 5, 10, 15 mass%) alloys are produced by powder injection molding, which offers advantages such as low cost, net shape, and easy production of complicated parts for implant fabrication. X-ray diffraction analysis and scanning electron microscope images showed that zirconium behaves as a β stabilizer and according to differential thermal analysis, and it decreases α to β transition temperature approximately 30 °C. It is also revealed that increasing zirconium content caused finer microstructure and hardness of the alloy was raised from 336 HV0.5 to 412 HV0.5 while elastic modulus remains approximately steady between 103 and 110 GPa. It is concluded that Ti–Nb–Zr alloys have been found to be a good alternative to known metallic implant materials.  相似文献   

7.
In this study, the change of the cooling rate in the range of about 0.1–1 °C s?1 and the addition of Sr on the crystallization kinetics of the cast zinc alloys of the ZnAlCu type, as well as its relation to the microstructure were also investigated. Therefore, the aim of the rapid crystallisation is the achievement of materials with better properties, which can be obtained by refinement of the dendritic or eutectic microstructure, elimination of segregation, or creation of metastable phases and their morphology changes. In the investigated alloys, the change of cooling rate of 1 °C s?1 has caused microstructure’s refinement as well as increase in hardness. Increase in the cooling rate causes also morphology changes of the η + α eutectic, and makes generally a global overcooling of the alloy as well as change in the temperatures at the beginning of crystallization T DN and of the alloy crystallization T S. The presented investigations concerning the electron microscopy methods, including transmission electron microscopy, allow revealing the crystallographic structure, based on the d-spacing changes, as well as the diffraction method used for phase determination, which is a helpful tool for the explanation of the important points in the thermo-derivative analysis curve, where the relation between the amount of phase and the occurrence of new phases can be determined.  相似文献   

8.
This paper is aimed to analyse the thermal behaviour in air of edible mushrooms through nonisothermal (TG, DTG, DTA) and calorimetric (Berthelot calorimeter) methods. The studied mushrooms were Pleurotus ostreatus spontaneously grown and from culture and Agaricus bisporus from culture, currently used in alimentation but insufficiently investigated from this point of view. The analysis of TG–DTG–DTA curves has indicated that the degradation mechanism is complex and characteristic to every species and major differences between the cap and the stipe of investigated mushrooms have not been recorded. These species are thermally stable in the range of 30–160 °C. The thermal stability in terms of initial degradation temperature (T i °C) and the temperature corresponding to the conversion grade (T α=0.03 °C) indicate that the stipe has a thermal stability close to the cap one and that the cultivated mushrooms are more thermally stable than those spontaneously grown. The obtained results concerning the combustion of the sample using Berthelot calorimeter are in accordance with the TG–DTG–DTA analysis. The residue obtained is a measure of the mineral content and is quantitatively close.  相似文献   

9.
Simple and efficient analytical LC methods using amylose-based stationary phase Chiralpak AS-H were developed for direct enantioseparation of tenatoprazole and several related benzimidazoles. The chromatographic experiments were performed in the normal phase mode with n-hexane–ethanol–triethylamine (TEA) as mobile phase. The effects of the mobile phase additive, concentration of organic modifiers and column temperature were studied for the enantioseparation. The thermodynamic parameters were also calculated from the van’t Hoff plots. It was found that the enantioseparations were all enthalpy driven. The enantiomers of all compounds were resolved (R s  > 3.3) within 14 min using n-hexane–ethanol–TEA (20:80:0.1%, v/v/v) as mobile phase with a flow rate of 0.4 mL min?1 at 40 °C. The optimized method was validated for determination of the enantiomers of tenatoprazole in terms of linearity, precision and accuracy according to ICH guidelines and applied to the assay of tenantoprazole bulk drugs. The proposed method was shown to be accurate and suitable for the quantitative determination of tenatoprazole enantiomers.  相似文献   

10.
Beibei Zhou  Jian Pan 《Chromatographia》2009,70(5-6):739-745
Cichoric acid is a water-soluble phenolic acid in Echinacea purpurea and has a high medicinal value. A rapid and novel argentation complex liquid chromatography method has been developed and validated for determination of cichoric acid in E. purpurea extract. The determination of cichoric acid was carried out on a Restek Pinnacle 11 C18 column (250 mm × 4.6 mm, 5 μm), using acetonitrile-deionized water (38:62, v/v, with 6 mmol L?1 AgNO3 and 0.8% acetic acid) as the mobile phase at a flow rate of 1.0 mL min?1 within 10 min. The wavelength was set at 326 nm. It improved the effect of determination by adding AgNO3 in the mobile phase while cichoric acid coordinated with Ag+. The mechanism of coordination between cichoric acid and Ag+ has been studied by Fourier transform infrared spectroscopy, electrospray ionization mass spectrometry. The mechanism which improved the effect of determination of cichoric acid is analyzed and applied in the rapid determination of salvianolic acid B (Sal B) in Danshen extract solution which has been stored for half a year. The possible structures of the complex and complex ratio are all provided in this article. The experiments have facilitated the study of cichoric acid–Ag+ and Sal B–Ag+ complex and provide a theoretical basis for industrialized extraction of cichoric acid and Sal B in the future.  相似文献   

11.
A carbon paste electrode based on γ-cyclodextrin–carbon nanotube composite (γ-CD–CNT–CME) was developed for the determination of propranolol hydrochloride (PRO). The electrochemical behaviour of PRO was investigated employing cyclic voltammetry, electrochemical impedance spectroscopy and differential pulse adsorptive stripping voltammetry (DPAdSV). Surface morphology of the electrode has been studied by means of scanning electron microscopy. The results revealed that the oxidation of PRO is facilitated at γ-CD–CNT–CME. Under the optimized conditions in Britton–Robinson buffer pH 1.5, the peak currents were found to vary linearly with their concentrations in the range of 1.42 × 10?7 to 4.76 × 10?5 M. A detection limit (S/N = 3) of 4.01 × 10?8 M was obtained for PRO by means of DPAdSV. The proposed method was employed for the determination of PRO in pharmaceutical formulations, urine and blood serum samples.  相似文献   

12.
The paper deals with the study of phase transformation temperatures of the model Fe–C–O based metallic alloys in the high temperature region (above 1,000 °C). Six model alloys with graded carbon and oxygen content were prepared and studied. Temperatures of phase transitions were obtained using DTA method (differential thermal analysis). The Setaram SETSYS 18? (TG/DTA/DSC/TMA) modular experimental system was used for measurements. Influence of composition change (carbon and oxygen content) on shift of phase transformation temperatures is investigated in this paper. New original data (phase transformation temperatures) were obtained in this study. Controlled heating of the alloys was conducted at the rates of 2, 4, 7, 10, 15 and 20 °C min?1. Comparison of the obtained experimental data with the data presented in the literature was also carried out. It follows from comparison of the obtained results with the data accessible in the literature that a lack of experimental data exists, and these available data significantly differ.  相似文献   

13.
In this work, a new sensor is proposed for the stripping voltammetric determination (anodic stripping voltammetry—ASV) of total arsenic(V) or arsenic(III). The sensor is based on an Fe-modified carbon composite electrode containing 30 % carbon black–high-pressure polyethylene (CB/PE). The modification with iron is achieved by the addition of Fe(III) or Fe(II) ions to the sample solution and co-electrodeposition of iron and arsenic on the CB/PE electrode. In anodic stripping voltammetry, two peaks are observed: an Fe peak at ?0.45 or ?0.29 V and a peak at 0.12?±?0.07 V which depends on the arsenic concentration and corresponds to the As(0) → As(III) oxidation, as is the case with other solid electrodes. The optimum conditions proposed for ASV determination of As(V) and As(III) in solutions in the presence of dissolved oxygen are the following: the background electrolyte is 0.005 M HCl containing 0.5–1 mg/?L Fe(III) for As(V) and containing 1.0–1.5 mg/?L Fe(III) for As(III), respectively; E dep?=??2.3 V; rest period at ?0.10 V for 3–5 s before the potential sweep from ?0.2 to +0.4 V; scan rate is 120 mV/?s. The detection limit (LOD, t?=?120 s) for As(III) and As(V) is 0.16 and 0.8 μg/?L, respectively. Various hypotheses on the effect of Fe ions and atoms on the electrodeposition and dissolution of arsenic are considered. The new method of determination of As(III) and As(V) differs from known analogues by its simplicity, low cost, and easy accessibility of the electrode material. It allows the voltammetric determination of total arsenic after chemical reduction of all its forms to As(III) or after their oxidation to As(V).  相似文献   

14.
A method for depth profiling chromium in the surface and near surface regions of materials using the resonance at 1,005 keV in 52Cr(p,γ)53Mn nuclear reaction is presented. The detection sensitivity, depth resolution and probing depth of the resonance in Si are determined to be about 3 at.%, 25 nm and 2.5 µm respectively from the excitation function of the reaction constructed in 0.90–1.2 MeV proton energy region by measuring 378 keV prompt γ-rays from 53Mn nuclei. The reaction is interference free. These features make the approach attractive for profiling chromium in mid as well as high Z matrices.  相似文献   

15.
P. D. Bari  A. R. Rote 《Chromatographia》2009,69(11-12):1469-1472
Two new, rapid, precise, accurate and specific chromatographic methods were described for the simultaneous determination of olmesartan medoxomil and hydrochlorothiazide in combined tablet dosage forms. The first method was based on reversed phase liquid chromatography using an Eurosphere 100 RP C18 column (250 × 4.6 mm ID, 5 μm). The mobile phase was methanol–0.05% o-phosphoric acid (60:40 v/v) at a flow rate of 1.0 mL min?1. Commercially available tablets and laboratory mixtures containing both drugs were assayed and detected using a UV detector at 270 nm. The second method involved silica gel 60 F254 high performance thin layer chromatography and densitometric detection at 254 nm using acetonitrile–ethyl acetate–glacial acid (7:3:0.4 v/v/v) as the mobile phase. Calibration curves ranged between 200–600 and 125–375 ng spot?1 for olmesartan and hydrochlorothiazide, respectively.  相似文献   

16.
The k 0-values were determined for five high Q 0(n,γ) reactions, including 74Se(n,γ) 75Se, 109Ag(n,γ) 110mAg, 114Cd(n,γ) 115Cd–115mIn, 130Ba(n,γ) 131Ba, and 152Sm(n,γ) 153Sm. These determinations were carried out under favorable experiment conditions: the irradiations were performed in a highly thermalized neutron flux, the irradiated target samples were counted at a far distance from HPGe detector with an efficiency carefully calibrated, and the k 0-values were calculated against an internal comparator. When compared to the new values from this work, the 2003 recommended 110mAg k 0-values are confirmed. The other confirmed recommended k 0-value is that of 75Se 400.7 keV line. However, for the other 75Se γ-lines, the new k 0-values are 4–10 % higher. It is assumed that an inaccurate efficiency calibration was used when the recommended k 0-values were measured. For the other three nuclides, the new k 0-values are higher by 4 % for the 115Cd–115mIn γ-lines, lower by 6–8 % for the 131Ba γ-lines, and lower by 8.8 % for the 153Sm 103.2 keV γ-line.  相似文献   

17.
A GC–MS method for the simultaneous determination of two process related toxic impurities viz. 2-(chloromethyl)-3,4-dimethoxypyridine hydrochloride (CDP) and dimethyl sulfate (DMS) and RP-LC for the routine determination of CDP in pantoprazole sodium (PPS) are presented. In GC–MS, a temperature gradient program was performed on a capillary DB-624 column (60 m × 0.32 mm × 1.8 μm). LC analysis of CDP was done on a Novaflex C18 (250 × 4.6 mm, 5 μm) column using mobile phase containing buffer (0.02 M potassium dihydrogen phosphate and 0.0025 M di potassium hydrogen phosphate) and acetonitrile in 46:54 v/v ratio. The flow rate was 1.0 mL min?1 and the elution was monitored at 220 nm. Both methods were validated as per International Conference on Harmonization (ICH) guidelines. GC–MS is able to quantitate up to 3.0 ppm of CDP and DMS whereas with RP-LC up to 9.0 ppm of CDP could be quantitated.  相似文献   

18.
A sensitive and selective liquid chromatography tandem mass spectrometry (LC-MS-MS) method for determination of doxapram hydrochloride in rabbit plasma was developed. After addition of urapidil hydrochloride as internal standard (IS), protein precipitation by 10% trichloroacetic acid in methanol (w/v) was used as sample preparation. Chromatographic separation was achieved on a Zorbax SB-C18 (2.1 mm × 50 mm, 3.5 μm) column with acetonitrile–water as mobile phase with gradient elution. Electrospray ionization (ESI) source was applied and operated in positive ion mode; multiple reaction monitoring (MRM) mode was used for quantification using target fragment ions m/z 378.9 → 291.8 for doxapram hydrochloride and m/z 387.9 → 204.6 for the IS. Calibration plots were linear over the range of 2–1000 ng mL?1 for doxapram hydrochloride in plasma. Lower limit of quantitation (LLOQ) for doxapram hydrochloride was 2 ng mL?1. Mean recovery of doxapram hydrochloride from plasma was in the range 83.7–91.5%. RSD of intra-day and inter-day precision were less than 9%, respectively. This method is simple and sensitive enough to be used in pharmacokinetic research for determination of doxapram hydrochloride in rabbit plasma.  相似文献   

19.
A sensitive LC–MS–MS method with electrospray ionization has been developed for determination of nikethamide in human plasma. After addition of atropine as internal standard, liquid–liquid extraction was used to produce a protein-free extract. Chromatographic separation was achieved on a 150 mm × 2.1 mm, 5 μm particle, Agilent Zorbax SB-C18 column, with 45:55 (v/v) methanol–water containing 0.1% formic acid as mobile phase. LC–MS–MS was performed in multiple reaction monitoring mode using target fragment ions m/z 178.8 → 107.8 for nikethamide and m/z 289.9 → 123.8 for the internal standard. Calibration plots were linear over the range of 20.0–2,000 ng mL?1. The lower limit of quantification was 20.0 ng mL?1. Intra-day and inter-day precisions were better than 4.2 and 6.1%, respectively. Mean recovery of nikethamide from human plasma was in the range 65.3–71.1%.  相似文献   

20.
An SPE-HPTLC method for simultaneous identification and quantification of seven pharmaceuticals in production wastewater was optimized and validated. The studied compounds were enrofloxacine, oxytetracycline, trimethoprim, sulfamethazine, sulfadiazine, sulfaguanidine and penicillin G/procaine. The method involves solid-phase extraction on hydrophilic-lipophilic balance cartridges with methanol and HPTLC analysis of extracts on CN modified chromatographic plates followed by videodensitometry at 254 and 366 nm. Optimization of chromatographic separation was performed by systematic variation of the mobile phase composition using genetic algorithm approach and the optimum mobile phase composition for TLC separation was 0.05 M H2C2O4:methanol = 0.81:0.19 (v/v). Linearity of the method was demonstrated in the ranges from 1.5 to 15.0 μg L−1 for enrofloxacine, 100–500 μg L−1 for oxytetracycline, 150–600 μg L−1 for trimethoprim, 300–1100 μg L−1 for sulfaguanidine and 100–400 μg L−1 for sulfamethazine, sulfadiazine and penicillin G/procaine with coefficients of determination higher than 0.991. Mean recoveries ranged from 74.6 to 117.1% and 55.1 to 108.0% for wellspring water and production wastewater, respectively. Only sulfaguanidine showed lower results. The described method has been applied to the determination of pharmaceuticals in wastewater samples from pharmaceutical industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号