首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nano-activated carbons obtained from oil palm empty fiber bunch (AC-EFB), bamboo stem (AC-BS), and coconut shells (AC-CNS) were reinforced in epoxy matrix to fabricate epoxy nanocomposites. The dynamic mechanical analysis of epoxy nanocomposites was carried out, and 5% AC-CNS treated with KOH-filled epoxy composites displayed the highest storage modulus of all the activated carbon–filled epoxy composites. The incorporation of a small amount of AC-BS, AC-EFB, and AC-CNS to the epoxy matrix enhanced the damping characteristics of the epoxy nanocomposites. The 5% AC-EFB treated with H3PO4 filled epoxy composites showed the highest glass transition temperature (Tg) in all temperature ranges.  相似文献   

2.
The adsorption of mercury from a single/multi-solute aqueous solution by activated carbon (AC) prepared from cherry stones (CS) by chemical activation with H3PO4, ZnCl2 or KOH is studied. Three series of AC (i.e., P, H3PO4; Z, ZnCl2; K, KOH) were prepared by controlling the impregnation ratio and carbonization temperature. The textural characterization of AC was carried out by gas adsorption, mercury porosimetry and density measurements. The surface chemistry was analyzed by the pH of the point of zero charge (pHzpc), FT-IR spectroscopy and Boehm’s method. Experiments of mercury adsorption were conducted by the batch method, using aqueous solutions of mercury and of mercury, cadmium and zinc without pH adjustment. The ACs possess a wide range of pore volumes and sizes. Their microporosity is usually well developed. The meso- and macropore volumes are higher for the P carbons and K carbons, respectively. BET surface areas as a rule range between 1000 and 2000 m2?g?1. The pHzpc is much lower for the P carbons. The content of acidic oxygen surface groups is lower for the K carbons, whereas the content of basic groups is higher for these carbons. The kinetics of the adsorption process of mercury is faster for ACs with high volumes of large size pores. However, the surface groups have a marked unfavorable influence on the kinetics. The pseudo-second order rate constant (k2×10?3, g/mol?h) is higher by the order Z-4-800 (67.69)>K-3-800 (43.45)>P-3.44-400 (36.98). The incorporation of zinc and cadmium to the mercury solution usually decelerates the adsorption process for the P carbons and Z carbons and accelerates it for the K carbons. The amount adsorbed of mercury is much larger for the K carbons than for the other ACs. For the Z carbons, competition effects of zinc and cadmium on the adsorption of mercury are negligible, which indicates that mercury adsorbs specifically on surface active sites of these adsorbents.  相似文献   

3.
Two commercial activated carbons with differences in their superficial chemistry, one granular and the other pelletised, were modified for use in phenol and 2,4-dinitrophenol adsorption. In this paper, changes to the activated carbon surface will be evaluated from their immersion calorimetry in water and benzene, and they will then be compared with Area BET, chemical parameters, micropore size distributions and hydrophobicity factors of the modified activated carbons. The activated carbons were modified using 60 % solutions of phosphoric acid (H3PO4), nitric acid (HNO3), zinc chloride (ZnCl2) and potassium hydroxide (KOH); the activated carbon/solution ratio was 1:3 and impregnation was conducted 291 K for a period of 72 h before samples were washed until a constant pH was obtained. Water immersion calorimetry showed that the best results were obtained from activated carbons modified with nitric acid, which increased from ?10.6 to ?29.8 J g?1 for modified granular activated carbon, and ?30.9 to ?129.3 J g?1 for pelletised activated carbon. Additionally, they showed the best results in phenol and 2.4-dititrophenol adsorption. Those results indicate that impregnation with nitric acid under the employed conditions could generate a greater presence of oxygenated groups on their surface, which favours hydrogen bond formation and the increased adsorption of polar compounds. It should also be noted that immersion enthalpy in benzene for modified activated carbon with nitric acid is the method with the lowest value, which is consistent with the increased presence of polar groups on its surface. Regarding hydrophobicity factors, it was observed that granular carbons modified with nitric acid and potassium hydroxide have the lowest ratios, indicating greater interaction with water.  相似文献   

4.
For the first time, toxic bio-tars collected from the gasification of pine sawdust are used as the precursor for activated carbons. Various types of activation agents including KOH, K2CO3, H3PO4 and ZnCl2 were screened for obtaining superior activated carbons. When KOH was used as an activation agent, the obtained activated carbons exhibited high specific surface area and large mesopore volume. The activated carbons were further employed to be the electrode material of supercapacitors, and its specific capacitance reached up to 260 F g?1 at 0.25 A g?1 current density. Also, it showed an excellent rate performance from preserving a relatively high specific capacitance of 151 F g?1 at 50 A g?1. The assembled device also exhibited the good electrochemical stability with the capacity retention of 90% after 5000 cycles. Furthermore, the maximum energy density of the activated carbons in organic electrolyte reached 17.8 Wh kg?1.  相似文献   

5.
A series of activated carbons with high mesoporous ratio were prepared by KOH reactivation based on activated carbon as the precursor. As the KOH/AC mass ratio was increased to 4:1, the mesoporous ratio increases from 60% to 76%, and the average pore size from 2.23 to 3.14?nm. Moreover, the specific capacitance for the activated carbon in ionic liquid 1-ethyl-3-methylmidazolium tetrafluoroborate ([EMIm]BF4) can reach the maximum value of 189?F?g?1 (8.0???F?cm?2). In addition, the decrease of specific capacitance for activated carbons by KOH reactivation with current density increase shows two regimes, suggesting that activated carbons with high mesoporous ratio are much fit for charge?Cdischarge at larger current density.  相似文献   

6.
Thermal properties of the organic–inorganic bicontinuous nanocomposites prepared via in situ two-stage polymerization of various silanes, epoxy, and amine monomers are investigated, and the impact of filler content and its organic compatibility on thermal stability of these nanocomposites is studied. Two series of epoxy–silica nanocomposites, namely, EpSi-A and EpSi-B containing 0–20 wt% silica, are synthesized. An epoxy–silane coupling agent is employed to improve the organic compatibility of silica in EpSiB nanocomposites. The composites synthesized via two-stage polymerization are characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry (DSC), and thermogravimetric (TG) analysis. DSC and TG/differential thermogravimetric results reveal substantially high glass transition (T g) and excellent thermal stability of the bicontinuous nanocomposites as compared with pristine epoxy polymer. Both T g and thermal properties, however, considerably vary depending on the organic compatibility of the nanocomposites. Significantly higher decomposition temperatures are recorded in case of EpSi-B nanocomposites owing to the chemical links between the epoxy and silica phases. Kinetic studies also show relatively higher activation energies of pyrolysis for EpSi-B nanocomposites.  相似文献   

7.
Cotton stalks, an agricultural waste, were chemically activated in a batch process using H3PO4 in a locally designed carbonizer at 420 °C in the absence of any purging gases. Mechanically cut short sticks were soaked in diluted H3PO4 for a short duration (Batch 1) and an extended period (Batch 2) prior to thermal treatment. The derived carbons contained both coarse and fine grains with acidic effect. Porosity was characterized by N2 adsorption at −196 °C and the isotherms analyzed by the α-method to estimate total and microporous surface areas in addition to total and microporous volumes. The produced carbons exhibited well-developed porosity that was essentially microporous in composition. Several key performance parameters were altered considerably as a result of impregnation with H3PO4 and the extended chemical activation period (Batch 2). Most of the internal porosity of both carbons was accessible to adsorption of iodine, whereas the uptake of methylene blue dye was proportional to the average size of micropores which were larger for the batch with a longer acid soaking time. SEM and FTIR investigations revealed the presence of a developed honeycomb structure and different oxygen functionalities on surfaces of the activated products which are advantageous in liquid-phase applications. Preliminary laboratory-scale experiments with Pb(II) indicate that adsorption capacity of target heavy metals compares favorably with commercially available activated carbons. The raw material, pre-processing, and activation process prove feasible for the production of activated carbon on a large scale, thereby providing a sustainable strategy for treatment of toxic waste streams.  相似文献   

8.
Were determined the immersion enthalpy in benzene and water for 24 carbonaceous materials, granular activated carbon and activated carbon monoliths prepared from African palm stone by chemical activation with H3PO4, ZnCl2 and CaCl2 solutions. The immersion enthalpies in benzene and water were exothermic, in accordance with a surface process that takes place between the solid and liquid. Benzene enthalpies for this set of solids were ?20.26 and ?181.1 J g?1 and water enthalpies were between ?7.42 and ?67.01 J g?1. The textural and chemical surface properties of the activated carbons were related to the immersion enthalpies. Since the evaluation of the porous structure was made with non-polar liquids with which the solid does not have a specific interaction, immersion enthalpy was proportional to the surface area accessible to liquid molecules, which was calculated from the enthalpic determinations based on the assumption of the existence of a direct relationship between the immersion enthalpy and the total area of the solid accessible to liquid molecules. The hydrophobic factor was calculated by dividing the immersion enthalpy in benzene and the immersion enthalpy in water; this is related to the acidity, basicity and hydrophobicity of the activated carbons.  相似文献   

9.
The cost-effective activated carbons derived from waste Camellia oleifera shell (COS) by ZnCl2 activation method are investigated as the active electrode material in electric double-layer capacitors (EDLCs) for the first time. The activation temperature and ZnCl2/COS impregnation ratio are two key factors affecting the surface area and pore structure of the prepared activated carbons, which accordingly affect their capacitive performances. Electrochemical investigations indicate that the activated carbon (AC-3-600) obtained at the activation temperature of 600 °C and impregnation ratio of 3 shows the maximum specific capacitance of 374 and 266 F?g?1 in 1 mol L?1 H2SO4 and 6 mol L?1 KOH electrolytes at 0.2 A g?1, respectively. The high capacitance of the AC-3-600 is attributed to its high surface area (1,935 m2 g?1), high total pore volume (1.02 cm3 g?1), and especially the large percentage of micropores (735 m2 g?1). Meanwhile, the activated carbon presents good cycle stability in both acid and alkaline electrolytes during 5,000 cycles at a fair current density of 4 A g?1. So, we had reasons to believe that the activated carbons from waste COS by ZnCl2 activation might be one of the innovative carbon electrode materials for EDLCs application.  相似文献   

10.
In this work, activated carbons (ACs) are obtained from petroleum pitch by the combination of a chemical treatment with different potassium permanganate (KMnO4) amounts, i.e., 0, 0.5, 1.0, and 2.0 g, and a chemical activation with KOH at a constant KOH/pitch ratio of 3/1. The effects of the chemical activating agent on the surface morphology and porosity are evaluated with scanning electron microscopy and N2 adsorption isotherms at 77 K, respectively. The specific surface area of the pitch-based ACs is increased with increasing the amount of KMnO4 pre-treatment and showed the highest value of 2,334 m2 g?1 at 2 g of KMnO4 amount. The electrochemical performance of AC electrodes is examined by cyclic voltammetry and galvanostatic charge/discharge characteristics in 6 M KOH electrolyte. Among the prepared ACs, 2.0 K-ACs possesses a specific capacitance as high as 237 F g?1 and showed excellent electrochemical performance due to its suitable porous structure and low interface resistance.  相似文献   

11.
Novel epoxy nanocomposites based on a diglycidyl ether of bisphenol A (DGEBA) epoxy, an epoxy functionalized hyperbranched polymer (HTTE) and nano‐Al2O3 were synthesized with the aim of determining the effect of the nano‐Al2O3 particles and HTTE on the structure and properties of epoxy nanocomposites. The mechanical properties, thermal conductivity, bulk resistivity, and thermal stability of the nano‐Al2O3/HTTE/DGEBA ternary composites were evaluated and compared with the corresponding matrix. The improvement in impact properties of these nanocomposites was explained in terms of fracture surface analysis by SEM. The results indicate that the incorporation of nanoparticles and hyperbranched epoxy effectively improved the toughness of epoxy composites without sacrificing thermal conductivity and bulk resistivity compared to the neat epoxy and Al2O3/DGEBA, obtaining a well dispersion of nanoparticles in epoxy matrix and solving the drawbacks for single fillers filled epoxy nanocomposite. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Oxygen-rich activated carbon with a three-dimensional network structure was prepared by chemical activation of coal tar residues with potassium hydroxide and subsequent carbonization treatment. Nanostructured Fe3O4/AC composites were then prepared by simple chemical coprecipitation method and were used as active electrode materials for supercapacitors. The electrochemical behaviors of Fe3O4/AC nanocomposites were characterized by cyclic voltammetry, galvanostatic charge–discharge and electrochemical impedance spectroscopy in 1.0 M Na2SO3 electrolyte. It was shown that the specific capacitance of Fe3O4/AC nanocomposites reached 150 F g?1 at a current density of 3.0 A g?1 and was a great improvement over Fe3O4 or AC alone. Furthermore, as-prepared Fe3O4/AC nanocomposites exhibited long cycle life without obvious capacitance fading even after 1,000 charge/discharge cycles. Compared with pure Fe3O4 and AC, the significant enhanced electrochemical performance of Fe3O4/AC nanocomposites could be reasonably attributed to the positive synergetic effect between Fe3O4 and AC.  相似文献   

13.
The porous activated carbons (ACs) were prepared from corn grains through physical (steam) and chemical–physical (H3PO4‐steam) activations. The effects of steam activation temperature (700–900 °C) on pore development, surface roughness, and energetic heterogeneity were investigated in both activations. Also, the effect of prior carbonization on H3PO4‐steam activation was studied. The physical properties, surface fractal dimensions, and adsorption energy distributions of ACs were determined from nitrogen adsorption–desorption isotherm data. Both physical and chemical–physical activations show that the AC with higher surface area, relatively smoother surface, and energetically heterogeneous surface could be produced at a maximum steam activation temperature (900 °C). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Porous CaC2-derived carbon (CCDC) was synthesized by one-step route from CaC2 in a freshly prepared chlorine environment at lower temperature. As-prepared CCDC was activated by H3PO4, ZnCl2, and KOH, respectively. The effects of the activation technology on the structure and morphology of CCDC were studied by X-ray diffraction, physical N2 adsorption/desorption, and transmission electron microscopy. It has been found that the pore structure and specific surface area of CCDC are apparently improved after activation; the CCDC activated by KOH especially showed an excellent specific surface area of 1,100?m2?g?1. The electrochemical performance of supercapacitors using activated CCDC as electrode active material was studied by cyclic voltammery, galvanostatic charge/discharge, and cycle life measurements. The results indicated that the CCDCs activated by H3PO4, ZnCl2, and KOH revealed enhanced capacitances of 172.6, 198.1, and 250.1?F?g?1 in 6?M KOH electrolyte, which were increased by 11.4, 27.8, and 61.2?% compared with the pristine CCDC (155?F?g?1), respectively. Furthermore, the supercapacitors using all activated CCDCs as electrode active material exhibited excellent cycle stability, and the specific capacitance for all activated CCDC samples had nearly no change after 5,000 cycles.  相似文献   

15.
Waste ion-exchange resin was utilized as precursor to produce activated carbon by KOH chemical activation, on which the effects of different activation temperatures, activation times and impregnation ratios were studied in this paper. The CO2 adsorption of the produced activated carbon was tested by TGA at 30 °C and environment pressure. Furthermore, the effects of preparation parameters on CO2 adsorption were investigated. Experimental results show that the produced activated carbons are microporous carbons, which are suitable for CO2 adsorption. The CO2 adsorption capacity increases firstly and then decreases with the increase of activation temperature, activation time and impregnation rate. The maximum adsorption capacity is 81.24 mg/g under the condition of 30 °C and pure CO2. The results also suggest that waste ion-exchange resin-based activated carbons possess great potential as adsorbents for post-combustion CO2 capture.  相似文献   

16.
This paper presents the properties of epoxy nanocomposites, prepared using a synthesized hybrid Polypyrrole-Graphene Oxide (PPy-GO) filler, via in-situ chemical polymerization, at various filler loadings (i.e., 0.5–2 w. t %). The microstructures and properties of the PPy-GO hybrids and epoxy nanocomposites were studied via Fourier transform infrared (FTIR), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), mechanical (Tensile Properties), electrical, Dynamic mechanical thermal analysis (DMTA) and thermogravimetric analyses (TGA). Morphological study demonstrated that varying the nanofiller nature (PPy-GOs, PPy or GO) lead to different states of dispersion. Mechanical, electrical and thermal analysis demonstrated that the hybrid concentration and its architecture (PPy:GO ratio) are interesting factors significantly affected the properties of the epoxy based nanocomposites. On the other hand, the mechanical performance of the cured nanocomposites outperformed the PPy-GO, with enhancements of 78% and 51% of Young's modulus and strength, respectively. Here it has been established that the embedding of PPy-GO hybrids into pristine epoxy endows optimum dispersion of PPy and GO as well as better interfacial adhesion between the fillers and matrix, which results in a significant improvement in load transfer effectiveness. Electrical conductivity measurements showed that conductivity of epoxy filled nanocomposites increased up 10−4 S/cm for Epoxy/PPy-GO nanocomposites. DMTA test indicated that incorporation of PPy-GO resulted in a significantly increase in Tg of the resultant nanocomposites, which is attributed to the highly exfoliation structure and the stronger interfacial interaction. The PPy-GO particles enhanced electrical, thermal and mechanical properties of nanocomposites, confirming the synergistic effect of PPy-GO as multifunctional filler.  相似文献   

17.
选用KOH、NaOH、H3PO4对有序介孔碳CMK-3进行了活化,通过X射线衍射、低温氮吸附-脱附等对样品进行了表征,发现活化后样品的结构发生了巨大的变化。有序介孔碳CMK-3的有序性逐渐降低,比表面积明显增大,2 nm介孔明显增多。讨论了CMK-3和KOH质量比、活化温度、不同活化剂对活化效果的影响。储氢测试表明活化能够明显提高CMK-3的储氢性能,77K、100 kPa时的储氢性能高达2.32wt%。  相似文献   

18.
《中国化学快报》2022,33(7):3534-3538
Due to the rigid Si-O-Si backbone, silicone rubber (SR) have a widespread application in extreme environment such as high temperature and high-level radiation. However, the radiation stability of SR still does not meet the practical needs in special radiation environments. Herein we prepared epoxy POSS(ePOSS)/SR nanocomposites with excellent thermal stability and radiation resistance. As a physical crosslinking point in the SR, addition of small amount of ePOSS not only enhanced the mechanical properties of the matrix, but also improved its thermal stability greatly due to their good compatibility. ePOSS/SR had higher radiation stability in air than SR owing to the inhibition of radiation oxidation by ePOSS, and the yield of main gaseous radiolysis products (CH4, H2, CO and CO2) of SR and ePOSS/SR nanocomposites was determined. By analyzing the changes of chemical structure, thermal properties and mechanical properties of the ePOSS/SR nanocomposite, combined with the characteristics of gas products after γ-irradiation, the radiation induced crosslinking and degradation mechanism of the nanocomposites was proposed comprehensively.  相似文献   

19.
Coir pith obtained from the coir industry as waste biomass was used to prepare activated carbon by chemical activation using phosphoric acid (H3PO4). The influences of activation temperature and lasting time of activation on specific surface areas (SSA) of the activated carbons were observed. Physical characteristics of the activated carbon were investigated using X-ray diffraction (XRD), infra-red spectroscopy (IR), surface area analyzer, scanning electron microscopy (SEM), thermal analysis and potentiometric titration. The feasibility of using activated carbon for the removal of phenol (P), p-chlorophenol (PCP) and p-nitrophenol (PNP) from water and petroleum refinery industry effluents was investigated. The effects of contact time, adsorbent dose, ionic strength and initial concentration on the adsorption of phenols onto the activated carbon were investigated. The optimum pH for the maximum removal of phenols was 6.0. The equilibrium adsorption data of phenols were correlated to Langmuir and Freundlich isotherm models, the latter being the best fit of the experimental data. Dynamics of the sorption process and mass transfer were investigated using McKay and Urano-Tachikawa models. Adsorption kinetic data fits the Urano-Tachikawa kinetic model. The utility of the adsorbent was tested by using petroleum refinery industry effluent. The adsorbed phenols can be recovered by treatment with 0.1 M NaOH solution.  相似文献   

20.
《中国化学会会志》2017,64(4):427-433
In this study, a carbon‐controllable hierarchical micro/mesoporous carbon–silica material derived from agricultural waste rice husk was easily synthesized and utilized as filler in an epoxy matrix for electronic packaging applications. Scanning electron microscopy, thermogravimetric analysis, and N2 adsorption/desorption isotherms were used to characterize the morphology, thermal stability, carbon content, and porous structural properties, respectively, of the as‐obtained carbon–silica material, namely rice husk char (RHC ). As a filler material, the uniformly dispersed RHC filler in the epoxy/RHC composite was easily prepared through hydrogen bonding of the silanol group of silica with the epoxy matrix. For electronic packaging applications, the thermal conductivity and thermomechanical properties (storage modulus and coefficient of thermal expansion) of the epoxy/RHC composites improved with increasing carbon content. Moreover, loading of the 40% RHC filler substantially enhanced the storage modulus of the epoxy/RHC composite (5735 MPa ) compared to the epoxy with 40% commercial silica filler (3681 MPa ). Considerable commercial potential is expected for the carbon–silica composite because of the simple synthesis process and outstanding performance of the prepared packaging material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号