首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The thermal decomposition characteristics and thermal sensitivity are key indicators for reflecting the thermal stability of explosives in storage and application. The thermal decompositions in different degrees are used to determine the dominant factor which controls the thermal stability of composite explosive. Four kinds of RDX-based aluminized explosives are marked as RA1, RA2, RA3, and RA4 with the Al content increasing from 10 to 40 mass%. The initial thermal decomposition behaviors were studied by DPTA and the complete thermal decompositions were studied by DSC and TG. The thermal sensitivities were characterized by 5-s explosion point. The effects of micron-sized Al particles and their contents on thermal decomposition were investigated. The evolved gas amount (V i) from DPTA test follows RA3 < RA4 < RA2 < RA1, indicating that RA3 has the best thermal stability at ambient storage conditions. However, according to TG and DSC tests, the characteristic temperatures of thermal decomposition (T p, T b, and T SADT), the thermodynamic parameters (?H e, ?S , and ?H ), the kinetic parameters (E a and A), and the 5-s explosion points all follow RA4 < RA3 < RA2 < RA1. The results indicate that the Al particles play different roles in the different degrees of thermal decomposition. In the initial decomposition, the Al particles have not been activated and are considered as inert materials that hinder the decomposition of explosive. In the complete decomposition, the Al particles catalyze the thermal decomposition, and such catalysis becomes more obvious as the Al content increases to a certain degree.  相似文献   

2.
The thermal stability and kinetics of isothermal decomposition of diosgenin were studied by thermogravimetry (TG) and Differential Scanning Calorimeter (DSC). The activation energy of the thermal decomposition process was determined from the analysis of TG curves by the methods of Flynn-Wall-Ozawa, Doyle, ?atava-?esták and Kissinger, respectively. The mechanism of thermal decomposition was determined to be Avrami-Erofeev equation (n = 1/3, n is the reaction order) with integral form G(α) = [?ln(1 ? α)]1/3 (α = 0.10–0.80). E a and logA [s?1] were determined to be 44.10 kJ mol?1 and 3.12, respectively. Moreover, the thermodynamics properties of ΔH , ΔS , and ΔG of this reaction were 38.18 kJ mol?1, ?199.76 J mol?1 K?1, and 164.36 kJ mol?1 in the stage of thermal decomposition.  相似文献   

3.
The kinetics of thermal decomposition of NH4CuPO4·H2O was studied using isoconversional calculation procedure. The iterative isoconversional procedure was applied to estimate the apparent activation energy E a; the values of apparent activation energies associated with the first stage (dehydration), the second stage (deamination), and the third stage(condensation) for the thermal decomposition of NH4CuPO4·H2O were determined to be 117.7 ± 7.7, 167.9 ± 8.4, and 217.6 ± 45.5 kJ mol?1, respectively, which demonstrate that the third stage is a kinetically complex process, and the first and second stages are single-step kinetic processes and can be described by a unique kinetic triplet [E a, A, g(α)]. A new modified method of the multiple rate iso-temperature was used to define the most probable mechanism g(α) of the two stages; and reliability of the used method for the determination of the kinetic mechanism were tested by the comparison between experimental plot and model results for every heating rate. The results show that the mechanism functions of the two stages are reliable. The pre-exponential factor A of the two stages was obtained on the basis of E a and g(α). Besides, the thermodynamic parameters (ΔS , ΔH , and ΔG ) of the two stages were also calculated.  相似文献   

4.
The thermal stability and kinetics of decomposition of cinnamic acid were investigated by thermogravimetry and differential scanning calorimetry at four heating rates. The activation energies of this process were calculated from analysis of TG curves by methods of Flynn-Wall-Ozawa, Doyle, Distributed Activation Energy Model, ?atava-?esták and Kissinger, respectively. There are only one stage of thermal decomposition process in TG and two endothermic peaks in DSC. For this decomposition process of cinnamic acid, E and logA[s?1] were determined to be 81.74 kJ mol?1 and 8.67, respectively. The mechanism was Mampel Power law (the reaction order, n = 1), with integral form G(α) = α (α = 0.1–0.9). Moreover, thermodynamic properties of ΔH , ΔS , ΔG were 77.96 kJ mol?1, ?90.71 J mol?1 K?1, 119.41 kJ mol?1.  相似文献   

5.
The complexes of [Sm(o-MOBA)3bipy]2·H2O and [Sm(m-MOBA)3bipy]2·H2O (o(m)-MOBA = o(m)-methoxybenzoic acid, bipy-2,2′-bipyridine) have been synthesized and characterized by elemental analysis, IR, UV, XRD and molar conductance, respectively. The thermal decomposition processes of the two complexes were studied by means of TG–DTG and IR techniques. The thermal decomposition kinetics of them were investigated from analysis of the TG and DTG curves by jointly using advanced double equal-double steps method and Starink method. The kinetic parameters (activation energy E and pre-exponential factor A) and thermodynamic parameters (ΔH , ΔG and ΔS ) of the second-step decomposition process for the two complexes were obtained, respectively.  相似文献   

6.
The thermal stability and kinetics of isothermal decomposition of carbamazepine were studied under isothermal conditions by thermogravimetry (TGA) and differential scanning calorimetry (DSC) at three heating rates. Particularly, transformation of crystal forms occurs at 153.75°C. The activation energy of this thermal decomposition process was calculated from the analysis of TG curves by Flynn-Wall-Ozawa, Doyle, distributed activation energy model, ?atava-?esták and Kissinger methods. There were two different stages of thermal decomposition process. For the first stage, E and logA [s?1] were determined to be 42.51 kJ mol?1 and 3.45, respectively. In the second stage, E and logA [s?1] were 47.75 kJ mol?1 and 3.80. The mechanism of thermal decomposition was Avrami-Erofeev (the reaction order, n = 1/3), with integral form G(α) = [?ln(1 ? α)]1/3 (α = ~0.1–0.8) in the first stage and Avrami-Erofeev (the reaction order, n = 1) with integral form G(α) = ?ln(1 ? α) (α = ~0.9–0.99) in the second stage. Moreover, ΔH , ΔS , ΔG values were 37.84 kJ mol?1, ?192.41 J mol?1 K?1, 146.32 kJ mol?1 and 42.68 kJ mol?1, ?186.41 J mol?1 K?1, 156.26 kJ mol?1 for the first and second stage, respectively.  相似文献   

7.
N,N-dimethyl-3-oxa-glutaramic acid was purified and characterized by 1H-NMR, Fourier transform infrared spectroscopy (FT-IR) and elemental analysis. The thermal decomposition of the title compound was studied by means of thermogravimetry differential thermogravimetry (TG-DTG) and FT-IR. The kinetic parameters of its second-stage decomposition reaction were calculated and the decomposition mechanism was discussed. The kinetic model function in a differential form, apparent activation energy and pre-exponential constant of the reaction are 3/2 [(1?α)1/3?1]?1, 203.75 kJ·mol?1 and 1017.95s?1, respectively. The values of ΔS , ΔH and ΔG of the reaction are 94.28 J·mol?1·K?1, 203.75 kJ·mol?1 and 155.75 kJ·mol?1, respectively.  相似文献   

8.
Nanocrystalline LiMn2O4 was synthesized by calcining LiMn2(CO3)2.5·0.8H2O above 600 °C in air. The precursor and its calcined products were characterized by thermogravimetry and differential scanning calorimetry, X-ray powder diffraction, and scanning electron microscopy. The result showed that highly crystallization LiMn2O4 with cubic structure [space group Fd-3m(227)] was obtained when the precursor was calcined at 600 °C in air for 1.5 h. The thermal process of the precursor in air experienced three steps which involved, at first, the dehydration of 0.8 water molecules, then decomposition of MnCO3 into Mn2O3, at last, reaction of Mn2O3 and Li2CO3 into cubic LiMn2O4. Based on Starink equation, the values of the activation energies associated with the thermal process of LiMn2(CO3)2.5·0.8H2O were determined. Besides, most probable mechanism functions and thermodynamic functions (ΔS , ΔH , and ΔG ) of thermal processes of LiMn2(CO3)2.5·0.8H2O were also determined.  相似文献   

9.
Introduction Dinitroglycoluril (DINGU) is a typical cyclourea nitramine. Its crystal density is 1.94 gcm-3. The detonation velocity corresponding to =1.94 gcm-3 is about 8450 ms-1. Its sensitivity to impact is better than that of cyclotrimethylenetrinitramine. It has the potential for possible use as high explosive from the point of view of the above-mentioned high performance. Its preparation,1-4 properties1-4 and hydrolytic behavior4 have been reported. In the present paper, we report i…  相似文献   

10.
A novel complex [Ni(H2O)4(TO)2](NO3)2·2H2O (TO = 1,2,4-triazole-5-one) was synthesized and structurally characterized by X-ray crystal diffraction analysis. The decomposition reaction kinetic of the complex was studied using TG-DTG. A multiple heating rate method was utilized to determine the apparent activation energy (E a) and pre-exponential constant (A) of the former two decomposition stages, and the values are 109.2 kJ mol?1, 1013.80 s?1; 108.0 kJ mol?1, 1023.23 s?1, respectively. The critical temperature of thermal explosion, the entropy of activation (ΔS ), enthalpy of activation (ΔH ) and the free energy of activation (ΔG ) of the initial two decomposition stages of the complex were also calculated. The standard enthalpy of formation of the new complex was determined as being ?1464.55 ± 1.70 kJ mol?1 by a rotating-bomb calorimeter.  相似文献   

11.
The boiling point and volatility are important properties for fuels, as it is for quality control of the industry of petroleum diesel and biofuels. In addition, through the volatility is possible to predict properties, such as vapor pressure, density, latent heat, heat of vaporization, viscosity, and surface tension of biodiesel. From thermogravimetry analysis it is possible to find the kinetic parameters (activation energy, pre-exponential factor, and reaction order), of thermally simulated processes, like volatilization. With the kinetic parameters, it is possible to obtain the thermodynamic parameters by mathematical formula. For the kinetic parameters, the minor values of activation energy were found for mineral diesel (E = 49.38 kJ mol?1), followed by babassu biodiesel (E = 76.37 kJ mol?1), and palm biodiesel (E = 87.00 kJ mol?1). Between the two biofuels studied, the babassu biodiesel has the higher minor value of activation energy. The thermodynamics parameters of babassu biodiesel are, ΔS = ?129.12 J mol?1 K?1, ΔH = +80.38 kJ mol?1 and ΔG = +142.74 kJ mol?1. For palm biodiesel ΔS = ?119.26 J mol?1 K?1, ΔH = + 90.53 kJ mol?1 and ΔG = +141.21 kJ mol?1, and for diesel ΔS = ?131.3 J mol?1 K?1, ΔH = +53.29 kJ mol?1 and ΔG = +115.13 kJ mol?1. The kinetic thermal analysis shows that all E, ΔH, and ΔG values are positive and ΔS values are negative, consequently, all thermodynamic parameters indicate non-spontaneous processes of volatilization for all the fuels studied.  相似文献   

12.
The kinetics of the oxidation of ketorolac by hexacyanoferrate(III) (HCF) in aqueous alkaline medium at a constant ionic strength of 0.75 mol·dm?3 was studied spectrophotometrically at 300 K. A plausible mechanism was proposed and the rate law was derived. The mechanism of oxidation of ketorolac (KET) in alkaline medium has been shown to proceed via a KET-HCF complex, which decomposes in a slow step followed by other fast steps to give the products. The main oxidative product was identified as (2,3-dihydro-1-hydroxy-1H-pyrrolizin-5-yl-)(phenyl)methanone and is characterized by its LC–ESI–MS spectrum. Thermodynamic parameters of various equilibria of the mechanism were calculated and activation parameters ΔH , ΔS , ΔG and log10 A were found to be 29.9 kJ·mol?1, ?220 J·K?1·mol?1, 96 kJ·mol?1 and 2.70 respectively.  相似文献   

13.
In this research, ultrasound irradiation as a simple method was used to produce boron nanostructures. Reaction conditions such as boron concentration and sonication time show important roles in the size, morphology and growth process of the final products. The boron nanostructures (nanoparticles and nanorods) were characterized by scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, small-angle X-ray scattering and inductively coupled plasma atomic emission spectroscopy techniques. Primary evaluation of results showed that nanoparticles and nanorods of boron successfully have been prepared with 25–40 and 50–100 nm average particle size, respectively. These nanostructures (nanoparticles and nanorods) were studied as an additive for promoting the thermal decomposition of ammonium perchlorate (AP) particles. Thermochemical decomposition behaviors of treated samples were characterized by thermal gravimetric analysis and differential scanning calorimetry techniques. Also, the kinetic parameters of thermal decomposition processes of pure and treated samples were obtained by nonisothermal methods proposed by Kissinger and Ozawa. However, boron nanoparticles with the smallest average particle size (25–40 nm) have the most significant catalytic effect including the decrease in decomposition temperature of AP + B nanocomposite by 100 °C, increase in the heat of decomposition from 580 to 1354 J g?1 and decrease in activation energy from 207 to 110 kJ mol?1.  相似文献   

14.
MnCo2O4 spinel nanoparticles (NPs) have been prepared using Aloe vera gel solution. The characterization of prepared spinel was performed applying Fourier transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy, transmission electron spectroscope, scanning electron microscope and dynamic light scattering. The results manifested that the prepared nanoparticles were mainly spherical plus minor agglomeration with average size distribution between 35 and 60 nm. The catalytic activity of the prepared nanoparticles upon thermal degradation of ammonium perchlorate (AP) was evaluated applying differential scanning calorimetry and thermogravimetry instruments. MnCo2O4 nanoparticles increased the released heat of AP from 450 to 1480 J g?1 and decreased the decomposition temperature from 420 to 293 °C. The kinetic parameters obtained from Kissinger methods showed that the activation energy of AP thermal decomposition in the presence of MnCo2O4 NPs considerably decreased. Also, a mechanism has been proposed in the presence of catalyst for the process of thermal decomposition of AP.  相似文献   

15.
Bis-(3,3-dinitroazetidinyl)-oxamide ((DNAZ-CO)2) is an acyl derivative of 3,3-dinitroazetidine (DNAZ). It is prepared and its crystal structure is determined. The crystal is orthorhombic, Fdd2 space group, a = 13.136(14) Å, b = 19.48(3) Å, c = 10.326(14) Å, V = 2642 (6) Å3, Z = 8. A density functional theory (DFT) method of the Amsterdam Density Functional (ADF) package is used to calculate the geometry, frequencies, and properties. The optimized geometry, frontier orbital energy, and main atomic orbital percentage are obtained. The thermal behavior is studied under a non-isothermal condition by DSC and TG/DTG methods. The apparent activation energy (E a) and pre-exponential factor (A) of the exothermic decomposition reaction of (DNAZ-CO)2 are 164.10 kJmol?1 and 1013.38 s?1 respectively. The critical temperature of thermal explosion is 272.20°C. The values of ΔS , ΔH , and ΔG of this reaction are 6.44 Jmol?1·K?1, 163.76 kJmol?1 and 160.34 kJmol?1 respectively.  相似文献   

16.
The nickel phosphate octahydrate (Ni3(PO4)2·8H2O) was synthesized by a simple procedure and characterized by FTIR, TG/DTG/DTA, AAS, and XRD techniques. The morphologies of the title compound and its decomposition product were studied by the SEM method. The dehydration process of the synthesized hydrate occurred in one step over the temperature range of 120–250 °C, and the thermal decomposition product at 800 °C was found to be Ni3(PO4)2. The kinetic parameters (E and A) of this step were calculated using the Ozawa–Flynn–Wall and Kissinger–Akahira–Sunose methods. The iterative methods of both equations were carried out to determine the exact values of E, which confirm the single-step mechanism of the dehydration process. The non-isothermal kinetic method was used to determine the mechanism function of the dehydration, which indicates the contracting disk mechanism of R1 model as the most probable mechanism function and agrees well with the isothermal data. Besides, the isokinetic temperature value (T i) was calculated from the spectroscopic data. The thermodynamic functions of the activated complex (ΔS , ΔH , and ΔG ) of the dehydration process were calculated using the activated complex theory of Eyring. The kinetic parameters and thermodynamic functions of the activated complex for the dehydration process of Ni3(PO4)2·8H2O are reported for the first time.  相似文献   

17.
A GC-MS analysis of the azobisisobutyronitrile thermal decomposition products of in solutions at 80°C showed that the ratio of recombination and disproportionation rates of the cyanoisopropyl radical does not depend on the medium viscosity, but increases when the internal pressure of the solvent increases according to the log(k dispr/k rec) = ?1.25 + 0.096 P int 0.5 law. This means that the activation volume corresponding to recombination is larger than that corresponding to disproportionation. It follows from the relationship log(k dispr/k rec) = (ΔV rec ? Δv dispr P/RT that, for the decomposition of the substrate in benzene under a pressure of 0.5–4.0 kbar, the difference between the activation volumes is ΔV rec ? ΔV dispr = 8 cm3/mol.  相似文献   

18.
The thermal decomposition properties and the heat of combustion (ΔH) of samples with different ammonium perchlorate (AP)/double base propellant (DB) mass ratios under argon atmosphere were studied by the thermogravimetry–differential scanning calorimetry–mass spectrometry–Fourier transform infrared spectroscopy (TG–DSC–MS–FTIR) and automatic calorimeter method. The results show that decomposition process of AP/DB samples in negative and zero oxygen balance (OB) is different from that in positive OB. With the increasing of AP in the AP/DB samples, the decomposition of the samples becomes more and more severe. When the OB of the samples is positive, the phenomenon of deflagration or explosion could be observed in the decomposition process. The sample with OB = 0 has the greatest heat of combustion.  相似文献   

19.
The thermal behavior and thermal decomposition kinetic parameters of podophyllotoxin (1) and 4 derivatives, picropodophyllin (2), deoxypodophyllotoxin (3), fl-apopicropodophyllin (4), podophyllotoxone (5) in a temperature-programmed mode have been investigated by means of DSC and TG-DTG. The kinetic model functions in differential and integral forms of the thermal decomposition reactions mentioned above for first stage were established. The kinetic parameters of the apparent activation energy Ea and per-exponential factor A were obtained from analy- sis of the TG-DTG curves by integral and differential methods. The most probable kinetic model function of the decomposition reaction in differential form was (1- a)^2 for compounds 1-3,2/3·a^-1/2 for compound 4 and 1/2(1-a)·[-In(1-a)]^-1 for compound 5. The values of Ea indicated that the reactivity of compounds 1-5was increased in the order: 5〈4〈2〈1〈3. The values of the entropy of activation △S^≠, enthalpy of activation △H^≠ and free energy of activation △G^≠ of the reactions were estimated. The values of △G^≠ indicated that the thermal stability of compounds 1-3 with the samef(a) was increased in the order: 2〈3〈1.  相似文献   

20.
The Bi2Fe2(C2O4)5·5H2O was synthesized by solid-state reaction at low heat using Bi(NO3)3·5H2O, FeSO4·7H2O, and Na2C2O4 as raw materials. The nanocrystalline BiFeO3 was obtained by calcining Bi2Fe2(C2O4)5·5H2O at 600 °C in air. The precursor and its calcined products were characterized by thermogravimetry and differential scanning calorimetry, FT-IR, X-ray powder diffraction, and vibrating sample magnetometer. The data showed that highly crystallized BiFeO3 with hexagonal structure [space group R3c(161)] was obtained when the precursor was calcined at 600 °C in air for 1.5 h. The thermal process of the precursor in air experienced five steps which involved, at first, the dehydration of an adsorption water molecule, then dehydration of four crystal water molecules, decomposition of FeC2O4 into Fe2O3, decomposition of Bi2(C2O4)3 into Bi2O3, and at last, reaction of Bi2O3 and Fe2O3 into hexagonal BiFeO3. Based on Starink equation, the values of the activation energies associated with the thermal process of Bi2Fe2(C2O4)5·5H2O were determined. Besides, the most probable mechanism functions and thermodynamic functions (ΔS , ΔH , and ΔG ) of thermal processes of Bi2Fe2(C2O4)5·5H2O were also determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号