首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrochemical behavior of irreversibly adsorbed antimony on a Pt(110) electrode (Pt(110)/Sb) with various coverages was studied using cyclic voltammetry. The kinetics of HCOOH oxidation via reactive intermediates on Pt(110)/Sb were investigated quantitatively by employing the potential step technique and in situ FTIR spectroscopy. The results demonstrated that Sb adatoms were stable on Pt(110) when the electrode potential was below 0.45 V (SCE). It has been revealed that the dissociative adsorption of formic acid can be inhibited by the presence of Sbad on the Pt(110) surface. The electrocatalytic effects of Sbad towards HCOOH oxidation consist in a negative shift of the oxidation potential (about 350 mV) and the enhancement of the oxidation current. Based on the data processing method of integration transform developed in our previous papers, the kinetics of HCOOH oxidation on Pt(110)/Sb electrodes of different θSb have been investigated quantitatively, and both the rate constant kf and the transfer coefficient β were determined and reported.  相似文献   

2.
The processes of adsorption/desorption of copper adatoms on the basal Pt(100) face and stepped Pt(610), Pt(410) surfaces have been studied in perchloric acid solution by cyclic voltammetry. It has been shown that the positions of the Cu stripping peaks are determined by perfection of the adlayer. The “island” model is suggested to describe electrochemical behavior of the Pt(hkl)+Cuad system. Obtained results are important for target modification of shape-controlled nanoparticles that are used in electrocatalysis.  相似文献   

3.
In the present paper four platinum single crystal electrodes, two basal planes of Pt(111) and Pt(110) and two stepped surfaces of Pt(332) and Pt(331), were prepared and used in the study of electro-oxidation of ethylene glycol (EG). All of these Pt single crystal electrodes belong to the [1 0] zone of crystallography, and exhibit on their surface (111) symmetry sites or certain combinations of terraces of (111) symmetry with steps of (111) symmetry type. It has been found that as a result of a favourable steric matching of surface sites the Pt(110) electrode manifested a higher activity both for EG dissociative adsorption and oxidation than that of the Pt(111) electrode. The stepped surfaces of Pt(332) and Pt(331) operated with certain combinations of characteristics of Pt(111) and Pt(110). The best electrocatalytic properties have been obtained with a Pt(331) electrode, and this is attributed both to the configuration of the atomic arrangement and to the stability of this surface.In summary, the above results show that the performance of a given Pt single crystal electrode in EG oxidation at a potential below 1.0 V may be evaluated by three factors.
1. (1) The ability to resist self-poisoning (AB) which describes the difficulty of EG dissociative adsorption on the electrode surface.
2. (2) The activity for EG oxidation (AC). In considering that the threshold potential for EG oxidation on all electrodes is at 0.3 V and that the self-poisoning is encountered in PGPS, the activity for EG oxidation may be reasonably characterized by the intensity of the peak current acquired in NGPS near 0.6 V, which corresponds to the maximum current of EG oxidation on an activated (non-poisoned) surface of the electrode.
3. (3) The stability of activity during potential cycling (SA) between 0.05 and 1.0 V, which describes the resistance to the decrease of intensity of the EG oxidation current during voltammetric cycling.
For the two basal planes studied, the AB and SA of Pt(111) are higher than those of Pt(110), but its AC is much lower than that of Pt(110). These differences are clearly related to the surface atomic arrangement of the two electrodes. As has been discussed above, the surface of Pt(111) is atomically smooth and stable during voltammetric cycling. The surface of Pt(110) presents, however, atomic steps and is reconstructed under experimental conditions, i.e. certain steric configurations are encountered on the Pt(110) surface. The high AC and the low AB may be assigned to a favourite stereographic matching during EG adsorption and oxidation on Pt(110).The two electrodes with stepped surfaces, Pt(332) and Pt(331), contain different densities of (110) sites, which are formed on the border between terrace and step, as shown in Fig. 8. The AB of these two electrodes has been observed at a moderate range between that of Pt(111) and the AB of Pt(110). With a majority of (111) sites on its surface, the electrode of Pt(332) operates at a relatively higher AC than Pt(111) does, and its SA is not as good as that of Pt(111) but is much better than the SA of a Pt(110) electrode. In all cases the highest AC and SA are obtained with a Pt(331) electrode. It may be seen from the profile of a (331) plane (shown by the cross-section of A-A in Fig. 8) that all atoms on the top of the surface participated in forming (110) sites, and the atom on the step has two functions — one is to form a (110) site with an atom located in the terrace of second layer and the other is to form a (111) site in the terrace of the same layer. It has been mentioned in the above discussions that the Pt(110) electrode keeps a higher AC due to favourite stereographic matching in EG adsorption and oxidation, but its SA is the worst, due to the instability of the surface. The highest AC and SA obtained with Pt(331) may be ascribed not only to the high density of (110) sites existing on the surface, but also to the stabilization of these (110) sites, and moreover, the synergy generated by the atomic arrangement of the Pt(331) surface may also contribute to the performance of the Pt(331) electrode.  相似文献   

4.
Surface processes of CO2 reduction on Pt(210), Pt(310), and Pt(510) electrodes were studied by cyclic voltammetry. Different surface structures of these platinum single crystal electrodes were obtained by various treatment conditions. The experimental results illustrated that the electrocatalytic activity of Pt single crystal electrodes towards CO2 reduction is decreased in an order of Pt(210)>Pt(310)>Pt(510), i.e., with the decrease of (110) step density on well-defined surfaces. When the surfaces were reconstructed due to oxygen adsorption, the catalytic activity of all the three electrodes has been enhanced to a certain extent. Although the activity order remains unchanged, the electrocatalytic activity has been enhanced more significantly as the density of (110) step sites is more intensive on the Pt single crystal surface. It has revealed that the more open the surface structure is, the more active the Pt single crystal electrode will be, and the easier for the electrode to be transformed into a surface structure that exhibits higher activity under external inductions. However, the relatively ordered surfaces of Pt single crystal electrode are comparatively stable under the same external inductions. The present study has gained knowledge on the interaction between CO2 and Pt single crystal electrode surfaces at a microscopic level, and thrown new insight into understanding the surface processes of electrocatalytic reduction of CO2.  相似文献   

5.
运用电化学暂态方法和现场时间分辨FTIR反射光谱研究甲酸在Pt(100)单晶电极上的解离吸附和氧化过程,深入认识了甲酸解离吸附的反应速率在-0.25至0.25V电位区间呈火山形变化的规律。根据电化学现场时间分辨红外光谱的研究结果,提出在研究反动力学时避免甲酸解离吸附干扰的方法,为进一步研究甲酸在Pt(100)电极表面经活性中间体直接氧化至CO2的反应动力学奠定了基础。  相似文献   

6.
Sb在Pt(100),Pt(110),Pt(111)及Pt(320)上不可逆吸附的电化学特性   总被引:3,自引:0,他引:3  
研究了Sb在Pt(1 0 0 ) ,Pt(1 1 0 ) ,Pt(1 1 1 )和Pt(32 0 )单晶面上不可逆吸附的电化学特性 .发现当扫描电位的上限Eu≤ 0 .45V时 ,Sbad可以稳定地吸附在Pt(1 0 0 ) ,Pt(1 1 0 )和Pt(1 1 1 )表面 ,而Sbad在Pt(32 0 )表面稳定的电位较低 ,为Eu≤ 0 .40V .从饱和吸附Sb的铂单晶电极出发 ,通过改变电位扫描上限Eu 和电位扫描圈数可以获得不同Sb覆盖度 (θSb)的电极 .根据Sb和H在铂单晶电极表面共吸附的定量数据 ,对Sb在不同铂单晶面上饱和吸附的模型进行了初步探讨 .  相似文献   

7.
运用电化学暂态方法和现场时间分辨FTIR反射光谱研究甲酸在Pt(100)单晶电极上的解离吸附和氧化过程.深入认识了甲酸解离吸附的反应速率在-0.25至0.25V电位区间呈火山形变化的规律.根据电化学现场时间分辨红外光谱的研究结果,提出在研究反应动力学时避免甲酸解离吸附干扰的方法,为进一步研究甲酸在Pt(100)电极表面经活性中间体直接氧化至CO2的反应动力学奠定了基础.  相似文献   

8.
The formation of acetaldehyde adsorbates on Pt and Pd has been studied applying cyclic voltammetry and differential electrochemical mass spectrometry (DEMS). The adspecies were isolated on the metal surface at selected adsorption potentials (E ad) applying a flow cell procedure under potential control, and the anodic stripping were performed for each E ad. For Pt, two different contributions were established during oxidation: one at E < 0.80 V and the second in the range 0.80–1.50 V in the Pt oxide region. For Pd, the voltammetric profile resembles that for the oxidation of adsorbed CO. DEMS experiments have shown that CO2 was the sole electro-oxidation product in both cases. The oxidation of each C atom in acetaldehyde adsorbates has been distinguished using the isotopic-labelled aldehyde in DEMS experiments at selected E ad. It was observed that, on Pt, acetaldehyde molecules loose part of the CH3 groups during adsorption at E ad < 0.40 V, whereas the CHO groups are easily oxidized at E ad > 0.40 V. Therefore, both C1 and C2 species are present on the surface, and their yields depend on E ad. On the contrary, on Pd, most of the CH3 groups are lost during adsorption at all E ad, and the main adsorbed species seems to be COad. Dedicated to Prof. Dr. Teresa Iwasita on the occasion of her 65th birthday in recognition of her numerous contributions to interfacial electrochemistry.  相似文献   

9.
When Cu(110), Ni(l 10), Ag(110) surfaces are exposed to O2 at room temperature, one dimensional metal-oxygen strings grow in the < 001 > direction of the (110) surfaces. A similar phenomenon occurs in the adsorption of H2 on Ni( 110) surface at room temperature, where the one dimensional strings grow along the < 110 > direction. These phenomena are undoubtedly different from the adsorption induced reconstruction but are explained by the chemical reconstruction involving the formation of quasi-compounds and their self-ordering on the metal surfaces. The chemical reconstruction is indispensablly important to understand the structure and catalysis of alloy and bimetallic surfaces. Pt0.25Rh0.75(100) alloy surface being active for the reaction of NO with H2 is an interesting example. When the Pt-Rh(100) alloy surface is exposed to NO or O2 at arround 500 K, a p(3 × 1) ordered Rh-O over-layer is obtained on a Pt-enriched 2nd layer by the chemical reconstruction. Ordering of Rh-0 in the p(3 × 1) structure on the Pt(100) surface was reproduced by heating a Rh/Pt(100) bimetallic surface in O2, and the chemical reconstruction making the p(3 × 1) Rh-O overlayer on a Pt enriched 2nd layer was also proved by heating a Pt/Rh(100) bimetallic surface in O2 or NO. The activation mechanism of the Pt-Rh alloy and the Pt/Rh bimetallic surfaces by the chemical reconstruction was evidently shown by using a Pt deposited Rh(100), Pt/Rh(100), surface. That is, the Pt/Rh(100) is not so active for the reaction of NO with H2, but the reconstructed p(3 × 1)Rh-O/Pt-layer/Rh(100) surface is very active for the reaction. Therefore, it was concluded that the chemical reconstruction of the Pt-Rh catalyst makes the active surface which is composed of Rh-O and a Pt layer.  相似文献   

10.
Kinetics of the oxygen reduction reaction (orr) and the hydrogen evolution–oxidation reactions (her/hor) were studied on the Pt(111) and Pt(100) surfaces in 0.05 M H2SO4 containing Cl. The orr is strongly inhibited on the (100) surface modified by adsorbed Cl (Clad), and it occurs as a 3.5e reduction via solution phase peroxide formation. In the hydrogen adsorption (Hupd) potential region, the orr is even more inhibited, and corresponds only to a 2 e reduction at the negative potential limit where the electrode is covered by one monolayer of Hupd and some (unknown) amount of Clad. On the Pt(111)---Clad surface, the orr is inhibited relatively little (in addition to that caused by strong bisulfate anion adsorption on this surface), and the reaction pathway is the same as in Cl free solution. The kinetics of the hor on Pt(111) are the same in pure solution and in a solution containing Cl, since Clad does not affect platinum sites required for the breaking of the H---H bond. A relatively large inhibition of the hor is observed on the (100) surface, implying that strongly adsorbed Clad is present on the surface even near 0 V.  相似文献   

11.
甲酸在Pt(100)单晶电极表面解离吸附过程的动力学   总被引:7,自引:3,他引:7  
有机小分子在电催化剂表面的解离吸附,是燃料电池阳极氧化过程中发生自毒化现象的主要原因.事实上这类解离吸附是一种表面分子过程,包括有机分子在电极表面吸附,分子内断键,生成新的吸附分子或基因等步骤.Sun等研究了甲醇等在一系列铂单晶电极上的解离吸附,发现这类过程极强地依赖于电极表面原子排列结构.虽然已有大量文献报导了运用原位红外光谱检测各类有机小分子解离吸附物种,但迄今仍未见到动力学方面的研究结果.显然,对这种在电化学条件下表面分子反应过程的动力学研究,必将进一步揭  相似文献   

12.
Surface processes of CO2 reduction on Pt(210), Pt(310), and Pt(510) electrodes were studied by cyclic voltammetry. Different surface structures of these platinum single crystal electrodes were obtained by various treatment conditions. The experimental results illustrated that the electrocatalytic activity of Pt single crystal electrodes towards CO2 reduction is decreased in an order of Pt(210)>Pt(310)>Pt(510), i.e., with the decrease of (110) step density on well-defined surfaces. When the surfaces were reconstructed due to oxygen adsorption, the catalytic activity of all the three electrodes has been enhanced to a cer- tain extent. Although the activity order remains unchanged, the electrocatalytic activity has been en- hanced more significantly as the density of (110) step sites is more intensive on the Pt single crystal surface. It has revealed that the more open the surface structure is, the more active the Pt single crystal electrode will be, and the easier for the electrode to be transformed into a surface structure that exhib- its higher activity under external inductions. However, the relatively ordered surfaces of Pt single crystal electrode are comparatively stable under the same external inductions. The present study has gained knowledge on the interaction between CO2 and Pt single crystal electrode surfaces at a micro- scopic level, and thrown new insight into understanding the surface processes of electrocatalytic re- duction of CO2.  相似文献   

13.
It was demonstrated that adsorbed CO is obtained from the reduction of NaHCO3 solution when Pt(100), Pt(110), disordered Pt(111) and polycrystalline electrodes are employed. Reduction of CO2 coming from the dissociation of the hydrogencarbonate anion is proposed as the reaction that produces CO. By using Fourier transform infrared spectroscopy, linear and multi-bonded CO were detected on polycrystalline platinum electrodes. The shape of the band associated with linearly adsorbed CO is monopolar as a consequence of the partial overlapping, at lower wavenumbers, of the absolute bands at both potentials (0.05 and 0.35 V).  相似文献   

14.
Polymer electrolyte fuel cells constitute one of the most important efficiency energy converters for non-centralised uses. However, the use of fuels arising from reformate processes significantly lowers the current efficiency because of anodic catalytic poison coming from adsorbed carbon monoxide (COad). In this work, the influence of the addition of hydrogen peroxide in the flow current is studied, considering the adsorption and electrochemical oxidation of carbon monoxide on carbon-supported Pt (20% Pt/Vulcan) and Pt:Ru (1:1, 20% Pt:Ru/Vulcan) catalysts in 2 M sulphuric acid. The investigation was conducted applying cyclic voltammetry and on-line differential electrochemical mass spectrometry. A series of experiments has been performed to investigate the influence of the temperature as well as the time of contact and the concentration of hydrogen peroxide. Oxidation of COad to carbon dioxide occurs at lower potentials in the presence of hydrogen peroxide. Moreover, it is possible to remove ca. 70% of COad on Pt/C electrodes. On the other hand, for PtRu/C electrodes, similar charge values to those of Pt/C electrodes were obtained for the CO stripping, but the process occurs at more negative potentials. In this case, the effect of partial desorption for COad by interaction with hydrogen peroxide is added to the bifunctional mechanism usually considered for this alloy. This paper is dedicated to Prof. Francisco Nart, in memoriam.  相似文献   

15.
 运用电化学暂态(电位阶跃)方法和时间分辨FTIR反射光谱研究甲酸在Pt电极上的解离吸附过程,揭示了这一表面分子过程的反应速率在-0.25至0.25VvsSCE区间呈火山形变化的规律,还测得在含10-3mol•L-1HCOOH的溶液中最大的初始解离速率(-0.06V时)为9.33×10-11mol•cm-2•s-1.  相似文献   

16.
Formic acid (HCOOH) decomposition at Pt film electrode has been studied by electrochem- ical in situ FTIR spectroscopy under attenuated-total-reflection configuration, in order to clarify whether bridge-bonded formate (HCOOb) is the reactive intermediate for COad for-mation from HCOOH molecules. When switching from HCOOH-free solution to HCOOH-containing solution at constant potential (E=0.4 V vs. RHE), we found that immediately upon solution switch COad formation rate is the highest, while surface coverage of formate is zero, then after COad formation rate decreases, while formate coverage reaches a steady state coverage quickly within ca. 1 s. Potential step experiment from E=0.75 V to 0.35 V, reveals that formate band intensity drops immediately right after the potential step, while the COad signal develops slowly with time. Both facts indicate that formate is not the reactive intermediate for formic acid dehydration to CO.  相似文献   

17.
利用俄歇电子能谱(AES)和程序升温脱附谱(TDS)研究了NO2在Ag/Pt(110)双金属表面的吸附和分解.室温下NO2 在Ag/Pt(110)双金属表面发生解离吸附, 生成NO(ads)和O(ads)表面吸附物种. 在升温过程中NO(ads)物种发生脱附或者进一步分解. 500 K时NO2在Ag/Pt(110)双金属表面发生解离吸附生成O(ads)表面吸附物种. Pt 向Ag传递电子, 从而削弱Pt-O键的强度, 降低O(ads)从Pt 表面的并合脱附温度. 发现能够形成具有稳定组成的Ag/Pt(110)合金结构, 其表现出与Pt(110)-(1×2)相似的解离吸附NO2能力, 但与O(ads)的结合明显弱于Pt(110)-(1×2). 该AgPt(110)合金结构是可能的低温催化直接分解氮氧化物活性结构.  相似文献   

18.
The mechanism of catalytic CO oxidation on Pt(100) and Pd(110) single-crystal surfaces and on Pt and Pd sharp tip (~103 Å) surfaces has been studied experimentally by temperature-programmed reaction, temperature desorption spectroscopy, field electron microscopy, and molecular beam techniques. Using the density functional theory the equilibrium states and stretching vibrations of oxygen atoms adsorbed on the Pt(100) surface have been calculated. The character of the mixed adsorption layer was established by high resolution electron energy loss spectroscopy—molecular adsorption (O2ads, COads) on Pt(100)-hex and dissociative adsorption (Oads, COads) on Pt(100)-(1×1). The origin of kinetic self-oscillations for the isothermal oxidation of CO in situ was studied in detail on the Pt and Pd tips by field electron microscopy. The initiating role of the reversible phase transition (hex) ? (1 × 1) of the Pt(100) nanoplane in the generation of regular chemical waves was established. The origination of self-oscillations and waves on the Pt(100) nanoplane was shown to be caused by the spontaneous periodical transition of the metal from the low-active state (hex) to the highly active catalytic state (1 × 1). A relationship between the reactivity of oxygen atoms (Oads) and the concentration of COads molecules was revealed for the Pd(110) surface. Studies using the isotope label 18Oads demonstrated that the low-temperature formation of CO2 at 150 K is a result of the reaction of CO with the highly reactive state of atomic oxygen (Oads). The possibility of the low-temperature oxidation of CO via interaction with the so-called “hot” oxygen atoms (Ohot) appearing on the surface at the instant of dissociation of O2ads molecules was studied by the molecular beam techniques.  相似文献   

19.
Hydrogen adsorption isotherms, evaluated by combination of cyclic voltammetry and chronoamperometry, are reported on Pt(1 1 1) and Pt(1 0 0) surfaces in 0.1 M HClO4. We found that at E > 0.05 V Pt(1 1 1) and Pt(1 0 0) are only partially covered by the adsorbed hydrogen (Had). On both surfaces, a full monolayer of the adsorbed hydrogen is completed at −0.1 V, i.e. the adsorption of atomic hydrogen is observed in the hydrogen evolution potential region. We also found, that the activity of the hydrogen oxidation reaction is mirrored by the shape of the hydrogen adsorption isotherms, implying that Had is in fact a spectator in the HOR.  相似文献   

20.
Platinum single-crystal electrodes of 5 mm diameter were prepared for in situ infrared spectroscopic measurements by melting platinum wires. The linear potential sweep voltammograms of hydrogen adsorption/desorption on Pt (111), (110) and (100) in 0.5 M sulphuric acid are in excellent agreement with those observed on smaller platinum single-crystal surfaces.The adsorption and oxidation of CO on Pt (111) in 0.5 M sulphuric acid was studied by in situ polarization modulated infrared reflection absorption spectroscopy. The effects of the initial adsorption potential and surface reconstruction on the nature and oxidation mechanism of the adsorbed CO layer are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号