首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Density functional theory studies on the all non-metal homodinuclear and heterodinuclear sandwich-like compounds C(2)(η(3)-L(3))(2) and BN(η(3)-L(3))(2) (L = BCO, BNN and CBO) have been performed. The staggered conformations of both C(2)(η(3)-L(3))(2) and BN(η(3)-L(3))(2) are predicted to be stable. The non-metal direct C-C and B-N bonds are covalent with σ interactions, which are formed by the interactions of s and p(z) orbitals of the center atoms. Different from the ionic metal-ligand bond in the traditional metal center sandwich-like compounds, the C-L, B-L, and N-L bonds are covalent in these all non-metal sandwich-like compounds. The NICS values indicate that the ligands of C(2)(η(3)-L(3))(2) and BN(η(3)-L(3))(2), as well as their bare rings, display multiple aromaticity (σ and π aromaticity). Both σ and π aromaticity of the ring ligands towards the center atoms become stronger after complexation with the center atoms, while the π aromaticity against the center atoms is reduced. The π aromaticity of the ligands bonded to different center atoms follows a trend of B > C > N, and the (CBO)(3)(+) ligands bonded to B possess the strongest π aromaticity. The dissociation reactions and possible synthetic reactions analysis show that these all non-metal sandwich-like compounds are stable, and the homodinuclear species are more stable than the heterodinuclear ones. These all non-metal binuclear sandwich-like compounds can be regarded as potential synthetic targets according to the highly negative free energies of the possible synthetic reactions. The isomerization reactions demonstrate that the CBO-based compounds should be more possible to synthesize in experiments than their BCO-based isomers.  相似文献   

2.
Density functional theory calculations have been performed for the terminal borylene, alylene, and gallylene complexes [(η(5)-C(5)H(5))(CO)(3)M(ENR(2))] (M = V, Nb; E = B, Al, Ga; R = CH(3), SiH(3), CMe(3), SiMe(3)) using the exchange correlation functional BP86. The calculated geometry parameters of vanadium borylene complex [(η(5)-C(5)H(5))(CO)(3)V{BN(SiMe(3))(2)}] are in excellent agreement with their available experimental values. The M-B bonds in the borylene complexes have partial M-B double-bond character, and the B-N bonds are nearly B═N double bonds. On the other hand, the M-E bonds in the studied metal alylene and gallylene complexes represent M-E single bonds with a very small M-E π-orbital contribution, and the Al-N and Ga-N bonds in the complexes have partial double-bond character. The orbital interactions between metal and ENR(2) in [(η(5)-C(5)H(5))(CO)(3)M(ENR(2))] arise mainly from M ← ENR(2) σ donation. The π-bonding contribution is, in all complexes, much smaller. The contributions of the electrostatic interactions ΔE(elstat) are significantly larger in all borylene, alylene, and gallylene complexes than the covalent bonding ΔE(orb); that is, the M-ENR(2) bonding in the complexes has a greater degree of ionic character.  相似文献   

3.
New syntheses of complexes containing the recently discovered (N(2))(3-) radical trianion have been developed by examining variations on the LnA(3)/M reductive system that delivers "LnA(2)" reactivity when Ln = scandium, yttrium, or a lanthanide, M = an alkali metal, and A = N(SiMe(3))(2) and C(5)R(5). The first examples of LnA(3)/M reduction of dinitrogen with aryloxide ligands (A = OC(6)R(5)) are reported: the combination of Dy(OAr)(3) (OAr = OC(6)H(3)(t)Bu(2)-2,6) with KC(8) under dinitrogen was found to produce both (N(2))(2-) and (N(2))(3-) products, [(ArO)(2)Dy(THF)(2)](2)(μ-η(2):η(2)-N(2)), 1, and [(ArO)(2)Dy(THF)](2)(μ-η(2):η(2)-N(2))[K(THF)(6)], 2a, respectively. The range of metals that form (N(2))(3-) complexes with [N(SiMe(3))(2)](-) ancillary ligands has been expanded from Y to Lu, Er, and La. Ln[N(SiMe(3))(2)](3)/M reactions with M = Na as well as KC(8) are reported. Reduction of the isolated (N(2))(2-) complex {[(Me(3)Si)(2)N](2)Y(THF)}(2)(μ-η(2):η(2)-N(2)), 3, with KC(8) forms the (N(2))(3-) complex, {[(Me(3)Si)(2)N](2)Y(THF)}(2)(μ-η(2):η(2)-N(2))[K(THF)(6)], 4a, in high yield. The reverse transformation, the conversion of 4a to 3 can be accomplished cleanly with elemental Hg. The crown ether derivative {[(Me(3)Si)(2)N](2)Y(THF)}(2)(μ-η(2):η(2)-N(2))[K(18-crown-6)(THF)(2)] was isolated from reduction of 3 with KC(8) in the presence of 18-crown-6 and found to be much less soluble in tetrahydrofuran (THF) than the [K(THF)(6)](+) salt, which facilitates its separation from 3. Evidence for ligand metalation in the Y[N(SiMe(3))(2)](3)/KC(8) reaction was obtained through the crystal structure of the metallacyclic complex {[(Me(3)Si)(2)N](2)Y[CH(2)Si(Me(2))NSiMe(3)]}[K(18-crown-6)(THF)(toluene)]. Density functional theory previously used only with reduced dinitrogen complexes of closed shell Sc(3+) and Y(3+) was extended to Lu(3+) as well as to open shell 4f(9) Dy(3+) complexes to allow the first comparison of bonding between these four metals.  相似文献   

4.
A series of homodinuclear platinum(II) complexes containing bridging chalcogenido ligands, [Pt(2)(mu-E)(2)(P empty set N)(4)] (P empty set N=dppy, E=S (1), Se (2); P empty set N=tBu-dppy, E=S (3)) (dppy=2-(diphenylphosphino)pyridine, tBu-dppy=4-tert-butyl-2-(diphenylphosphino)pyridine) have been synthesized and characterized. The nucleophilicity of the [Pt(2)E(2)] unit towards a number of d(10) metal ions and complexes has been demonstrated through the successful isolation of a number of novel heteropolynuclear platinum(II)-copper(I), -silver(I), and -gold(I) complexes: [[Pt(2)(mu(3)-E)(2)(dppy)(4)](2)Ag(3)](PF(6))(3) (E=S (4); Se (5)) and [Pt(2)(dppy)(4)(mu(3)-E)(2)M(2)(dppm)]X(2) (E=S, M=Ag, X=BF(4) (6); E=S, M=Cu, X=PF(6) (7); E=S, M=Au, X=PF(6) (8); E=Se, M=Ag, X=PF(6) (9); E=Se, M=Au, X=PF(6) (10)). Some of them display short metal.metal contacts. These complexes have been found to possess interesting luminescence properties. Through systematic comparison studies, the emission origin has been probed.  相似文献   

5.
Dimethylformamide solutions of K(3)E(7) (E = P, As) react with acetylene yielding the 1,2,3-tripnictolide anions [E(3)C(2)H(2)](-) (R = P (1), As (2)). Preliminary studies have shown that 1 and 2 displace labile ligands in [Ru(COD){η(3)-CH(3)C(CH(2))(2)}(2)] (COD = 1,5-cyclooctadiene) to yield the novel complexes [Ru(η(5)-E(3)C(2)H(2)){CH(3)C(CH(2))(2)}(2)}](-) (E = P (3), As (4)).  相似文献   

6.
Density Functional Theory calculations have been performed for the cationic half-sandwich gallylene complexes of iron, ruthenium, and osmium [(η(5)-C(5)H(5))(L)(2)M(GaX)](+) (M = Fe, L = CO, PMe(3); X = Cl, Br, I, NMe(2), Mes; M = Ru, Os: L = CO, PMe(3); X = I, NMe(2), Mes) at the BP86/TZ2P/ZORA level of theory. Calculated geometric parameters for the model iron iodogallylene system [(η(5)-C(5)H(5))(Me(3)P)(2)Fe(GaI)](+) are in excellent agreement with the recently reported experimental values for [(η(5)-C(5)Me(5))(dppe)Fe(GaI)](+). The M-Ga bonds in these systems are shorter than expected for single bonds, an observation attributed not to significant M-Ga π orbital contributions, but due instead primarily to high gallium s-orbital contributions to the M-Ga bonding orbitals. Such a finding is in line with the tenets of Bent's Rule insofar as correspondingly greater gallium p-orbital character is found in the bonds to the (more electronegative) gallylene substituent X. Consistent with this, ΔE(σ) is found to be overwhelmingly the dominant contribution to the orbital interaction between [(η(5)-C(5)H(5))(L)(2)M](+) and [GaX] fragments (with ΔE(π) equating to only 8.0-18.6% of the total orbital contributions); GaX ligands thus behave as predominantly σ-donor ligands. Electrostatic contributions to the overall interaction energy ΔE(int) are also very important, being comparable in magnitude (or in some cases even larger than) the corresponding orbital interactions.  相似文献   

7.
A series of titanium-group 3/lanthanide metal complexes have been prepared by reaction of [{Ti(η(5)-C(5)Me(5))(μ-NH)}(3)(μ(3)-N)] (1) with halide, triflate, or amido derivatives of the rare-earth metals. Treatment of 1 with metal halide complexes [MCl(3)(thf)(n)] or metal trifluoromethanesulfonate derivatives [M(O(3)SCF(3))(3)] at room temperature affords the cube-type adducts [X(3)M{(μ(3)-NH)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}] (X = Cl, M = Sc (2), Y (3), La (4), Sm (5), Er (6), Lu (7); X = OTf, M = Y (8), Sm (9), Er (10)). Treatment of yttrium (3) and lanthanum (4) halide complexes with 3 equiv of lithium 2,6-dimethylphenoxido [LiOAr] produces the aryloxido complexes [(ArO)(3)M{(μ(3)-NH)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}] (M = Y (11), La (12)). Complex 1 reacts with 0.5 equiv of rare-earth bis(trimethylsilyl)amido derivatives [M{N(SiMe(3))(2)}(3)] in toluene at 85-180 °C to afford the corner-shared double-cube nitrido compounds [M(μ(3)-N)(3)(μ(3)-NH)(3){Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}(2)] (M = Sc (13), Y (14), La (15), Sm (16), Eu (17), Er (18), Lu (19)) via NH(SiMe(3))(2) elimination. A single-cube intermediate [{(Me(3)Si)(2)N}Sc{(μ(3)-N)(2)(μ(3)-NH)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}] (20) was obtained by the treatment of 1 with 1 equiv of the scandium bis(trimethylsilyl)amido derivative [Sc{N(SiMe(3))(2)}(3)]. The X-ray crystal structures of 2, 7, 11, 14, 15, and 19 have been determined. The thermal decomposition in the solid state of double-cube nitrido complexes 14, 15, and 18 has been investigated by thermogravimetric analysis (TGA) and differential thermal analysis (DTA) measurements, as well as by pyrolysis experiments at 1100 °C under different atmospheres (Ar, H(2)/N(2), NH(3)) for the yttrium complex 14.  相似文献   

8.
Reactions of the preformed cluster [(η(5)-C(5)Me(5))(2)Mo(2)(μ(3)-S)(4)Cu(2)(MeCN)(2)](ClO(4))(2) (1) with two tetraphosphine ligands, 1,4-N,N,N',N'-tetra(diphenylphosphanylmethyl)benzene diamine (dpppda) and N,N,N',N'-tetra(diphenylphosphanylmethyl)ethylene diamine (dppeda), produced two bicyclic clusters {[(η(5)-C(5)Me(5))(2)Mo(2)(μ(3)-S)(4)Cu(2)](2)(L)}(ClO(4))(4) (3: L = dpppda; 4: L = dppeda). Analogous reactions of 1 or [(η(5)-C(5)Me(5))(2)Mo(2)(μ(3)-S)(4)Cu(2)(MeCN)(2)](PF(6))(2) (2) with two N,P mixed ligands, N,N-bi(diphenylphosphanylmethyl)-2-aminopyridine (bdppmapy) and N-diphenylphosphanylmethyl-4-aminopyridine (dppmapy), afforded two monocyclic clusters {[(η(5)-C(5)Me(5))(2)Mo(2)(μ(3)-S)(4)Cu(2)](2)(L)(2)}X(4) (5: L = bdppmapy, X = ClO(4); 6: L = dppmapy, X = PF(6)). Compounds 3-6 were fully characterized by elemental analysis, IR spectra, UV-vis spectra, (1)H and (31)P{(1)H} NMR spectra, ESI-MS and single-crystal X-ray crystallography. In the tetracations of 3-6, two cubane-like [Mo(2)(μ(3)-S)(4)Cu(2)] cores are linked either by one dpppda or dppeda bridge to form a bicyclic structure or by a pair of bdppmapy or dppmapy bridges to afford a monocyclic structure. The third-order nonlinear optical (NLO) properties of 1 and 3-6 in MeCN were also investigated by femtosecond degenerate four-wave mixing (DFWM) technique with a 50 fs pulse width at 800 nm. Compounds 3-6 exhibited enhanced third-order NLO performances relative to that of 1.  相似文献   

9.
The usual assumption of the extra stability of icosahedral boranes (2) over pentagonal-bipyramidal boranes (1) is reversed by substitution of a vertex by a group 13 metal. This preference is a result of the geometrical requirements for optimum overlap between the five-membered face of the ligand and the metal fragment. Isodesmic equations calculated at the B3LYP/LANL2DZ level indicate that the extra stability of 1-M-2,4-C(2)B(4)H(7) varies from 14.44 kcal/mol (M = Al) to 15.30 kcal/mol (M = Tl). Similarly, M(2,4-C(2)B(4)H(6))(2)(1-) is more stable than M(2,4-C(2)B(9)H(11))(2)(1-) by 9.26 kcal/mol (M = Al) and by 6.75 kcal/mol (M = Tl). The preference for (MC(2)B(4)H(6))(2) over (MC(2)B(9)H(11))(2) at the same level is 30.54 kcal/mol (M = Al), 33.16 kcal/ mol (M = Ga) and 37.77 kcal/mol (M = In). The metal-metal bonding here is comparable to those in CpZn-ZnCp and H(2)M-MH(2) (M= Al, Ga, and In).  相似文献   

10.
Eleven experimentally characterized complexes containing heterobimetallic bonds between elements of the f-block and other elements were examined by quantum chemical methods: [(η(5)-C(5)H(5))(2)(THF)LuRu(η(5)-C(5)H(5))(CO)(2)], [(η(5)-C(5)Me(5))(2)(I)ThRu(η(5)-C(5)H(5))(CO)(2)], [(η(5)-C(5)H(5))(2)YRe(η(5)-C(5)H(5))(2)], [{N(CH(2)CH(2)NSiMe(3))(3)}URe(η(5)-C(5)H(5))(2)], [Y{Ga(NArCh)(2)}{C(PPh(2)NSiH(3))(2)}(CH(3)OCH(3))(2)], [{N(CH(2)CH(2)NSiMe(3))(3)}U{Ga(NArCH)(2)}(THF)], [(η(5)-C(5)H(5))(3)UGa(η(5)-C(5)Me(5))], [Yb(η(5)-C(5)H(5)){Si(SiMe(3))(3)(THF)(2)}], [(η(5)-C(5)H(5))(3)U(SnPh(3))], [(η(5)-C(5)H(5))(3)U(SiPh(3))], and (Ph[Me]N)(3)USi(SiMe(3))(3). Geometries in good agreement with experiment were obtained at the density functional level of theory. The multiconfigurational complete active space self-consistent field method (CASSCF) and subsequent corrections with second order perturbation theory (CASPT2) were applied to further understand the electronic structure of the lanthanide/actinide-metal (or metal-metalloid) bonds. Fragment calculations and energy-decomposition analyses were also performed and indicate that charge transfer occurs from one supported metal fragment to the other, while the bonding itself is always dominated by ionic character.  相似文献   

11.
Quantum chemical calculations using gradient-corrected DFT at the BP86/TZ2P level of the compounds [Ti(eta(5)-E(5))(2)](2)(-) (E = CH, N, P, As, Sb) are reported. The nature of the metal-ligand bonding has been analyzed with an energy decomposition method, and the results are compared with [Fe(eta(5)-E(5))(2)]. The bonding in both series of complexes is more covalent than electrostatic. The energy decomposition analysis shows that the dominant orbital interactions in the negatively charged titanium species come from the (e(2)') Ti --> [(eta(5)-E(5))(2)](2)(-) back-donation (delta bonding) while the covalent bonding in the iron complexes come mainly from (e(1)' ') (Cp(-))(2) --> Fe(2+) donation (pi bonding). The nature of the metal-ligand interactions does not change very much for different ligands cyc-E(5) within the two series of compounds. The calculated bond dissociation energies for breaking one metal-ligand bond of the molecules [Ti(eta(5)-E(5))(2)](2)(-) shows for E the order P > As > Sb > N > CH. The central message of this work is that the complexes [Ti(eta(5)-E(5))(2)](2)(-) are delta bonded molecules.  相似文献   

12.
Gallium hydrazides are potentially applicable as facile starting compounds for the generation of GaN by thermolysis. The decomposition pathways are, however, complicated and depend strongly on the substituents attached to the gallium atoms and the hydrazido groups. This paper describes some systematic investigations into the thermolysis of the gallium hydrazine adduct Bu(t)(3)Ga←NH(2)-NHMe (1a) and the dimeric gallium hydrazides [R(2)Ga(N(2)H(2)R')](2) (2b, R = Bu(t), R' = Bu(t); 2c, R = Pr(i), R' = Ph; 2d, R = Me, R' = Bu(t)) which have four- or five-membered heterocycles in their molecular cores. Heating of the adduct 1a to 170 °C gave the heterocyclic compound Bu(t)(2)Ga(μ-NH(2))[μ-N(Me)-N(=CH(2))]GaBu(t)(2) (3) by cleavage of N-N bonds and rearrangement. 3 was further converted at 400 °C into the tetrameric gallium cyanide (Bu(t)(2)GaCN)(4) (4). The thermolysis of the hydrazide (Bu(t)(2)Ga)(2)(NH-NHBu(t))(2) (2b) at temperatures between 270 and 420 °C resulted in cleavage of all N-N bonds and the formation of an octanuclear gallium imide, (Bu(t)GaNH)(8) (6). The trimeric dialkylgallium amide (Bu(t)(2)GaNH(2))(3) (5) was isolated as an intermediate. Thermolysis of the hydrazides (Pr(i)(2)Ga)(2)(NH-NHPh)(NH(2)-NPh) (2c) and (Me(2)Ga)(2)(NH-NHBu(t))(2) (2d) proceeded in contrast with retention of the N-N bonds and afforded a variety of novel gallium hydrazido cage compounds with four gallium atoms and up to four hydrazido groups in a single molecule: (Pr(i)Ga)(4)(NH-NPh)(3)NH (7), (MeGa)(4)(NH-NBu(t))(4) (8), (MeGa)(4)(NH-NBu(t))(3)NBu(t) (9), and (MeGa)(4)(NHNBu(t))(3)NH (10). Partial hydrolysis gave reproducibly the unique octanuclear mixed hydrazido oxo compound (MeGa)(8)(NHNBu(t))(4)O(4) (11).  相似文献   

13.
The reactions of titanium oxide molecules with dinitrogen have been studied by matrix isolation infrared spectroscopy. The titanium monoxide molecule reacts with dinitrogen to form the TiO(N(2))(x) (x = 1-4) complexes spontaneously on annealing in solid neon. The TiO(η(1)-NN) complex is end-on bonded and was predicted to have a (3)A' ground state arising from the (3)Δ ground state of TiO. Argon doping experiments indicate that TiO(η(1)-NN) is able to form complexes with one or more argon atoms. Argon atom coordination induces a large red-shift of the N-N stretching frequency. The TiO(η(2)-N(2))(2) complex was characterized to have C(2v) symmetry, in which both the N(2) ligands are side-on bonded to the titanium metal center. The tridinitrogen complex TiO(η(1)-NN)(3) most likely has C(3v) symmetry with three end-on bonded N(2) ligands. The TiO(η(1)-NN)(4) complex was determined to have a C(4v) structure with four equivalent end-on bonded N(2) ligands. In addition, evidence is also presented for the formation of the TiO(2)(η(1)-NN)(x) (x = 1-4) complexes, which were predicted to be end-on bonded.  相似文献   

14.
Treatment of [(C(5)Me(5))(2)YH](2), 1, with KC(8) under N(2) in methylcyclohexane generates the unsolvated reduced dinitrogen complex, [(C(5)Me(5))(2)Y](2)(μ-η(2):η(2)-N(2)), 2, and extends the range of yttrium and lanthanide LnZ(2)Z'/M (Z = monoanion; M = alkali metal) dinitrogen reduction reactions to (Z')(-) = (H)(-). The hydride complex, 1, is unique in this reactivity compared to other alkane-soluble yttrium metallocenes, [(C(5)Me(5))(2)YX](x) {X = [N(SiMe(3))(2)](-), (Me)(-), (C(3)H(5))(-), and (C(5)Me(5))(-)} which did not generate 2 when treated with KC(8). [(C(5)Me(5))(2)LnH](x)/KC(8)/N(2) reactions with Ln = La and Lu did not give isolable dinitrogen complexes. Complex 2 and the unsolvated lutetium analogue, [(C(5)Me(5))(2)Lu](2)(μ-η(2):η(2)-N(2)), 3, were obtained using benzene as a solvent and [(C(5)Me(5))(2)Ln][(μ-Ph)(2)BPh(2)] as precursors with excess KC(8). Complex 2 functions as a reducing agent with PhSSPh to form [(C(5)Me(5))(2)Y(μ-SPh)](2), 4, in high yield.  相似文献   

15.
Density functional theory calculations have been performed for the dimethylgallyl complexes of iron, ruthenium, and osmium [(η(5)-C(5)H(5))(L)(2)M(GaMe(2)] (M = Fe, Ru, Os; L = CO, PMe(3)) at the DFT/BP86/TZ2P/ZORA level of theory. The calculated geometry of the iron complex [(η(5)-C(5)H(5))(CO)(2)Fe(GaMe(2))] is in excellent agreement with structurally characterized complex [(η(5)-C(5)H(5))(CO)(2)Fe(Ga(t)Bu(2))]. The Pauling bond order of the optimized structures shows that the M-Ga bonds in these complexes are nearly M-Ga single bond. Upon going from M = Fe to M = Os, the calculated M-Ga bond distance increases, while on substitution of the CO ligand by PMe(3), the calculated M-Ga bond distances decrease. The π-bonding component of the total orbital contribution is significantly smaller than that of σ-bonding. Thus, in these complexes the GaX(2) ligand behaves predominantly as a σ-donor. The contributions of the electrostatic interaction terms ΔE(elstat) are significantly smaller in all gallyl complexes than the covalent bonding ΔE(orb) term. The absolute values of the ΔE(Pauli), ΔE(int), and ΔE(elstat) contributions to the M-Ga bonds increases in both sets of complexes via the order Fe < Ru < Os. The Ga-C(CO) and Ga-P bond distances are smaller than the sum of van der Waal radii and, thus, suggest the presence of weak intermolecular Ga-C(CO) and Ga-P interactions.  相似文献   

16.
宋礼成  罗春成 《有机化学》2001,21(11):1009-1017
着重总结了我们研究组近几年来对M-M(M=Mo,W)金属单键化合物(η^5-RC5H4)2M2(CO)6,M=M金属双键化合物(η^5-RC5H4)2M2(CO)2(μ-EPh)2(E=S,Se,Te)及M≡M金属三键化合物(η^5-RC5H4)2M2(CO)4的反应化学所取得的系列成果。该系列成果清楚地表明这三类典型的金属键有机化合物可分别同多种无机、有机以及金属有机试剂发生涉及金属键加成、金属键断裂以及金属键上配体的消除和环戊二烯基配体上有机官能团的转化等一系列有趣反应。这些反应不仅有重要理论意义而且被广泛地用在新型金属有机和原子簇化合物的合成上。  相似文献   

17.
Treatment of [Mo(N(2))(PMe(3))(5)] with two equivalents GaCp* (Cp* = η(5)-C(5)(CH(3))(5)) leads to the formation of cis-[Mo(GaCp*)(2)(PMe(3))(4)] (1), while AlCp* did not react with this precursor. In addition, [Ni(GaCp*)(2)(PPh(3))(2)] (2a), [Ni(AlCp*)(2)(PPh(3))(2)] (2b), [Ni(GaCp*)(2)(PCy(3))(2)] (3a), [Ni(GaCp*)(2)(PMe(3))(2)] (3b), [Ni(GaCp*)(3)(PCy(3))] (4) and [Ni(GaCp*)(PMe(3))(3)] (5) have been prepared in high yields by a direct synthesis from [Ni(COD)(2)] and stoichiometric amounts of the ligands PR(3) and ECp* (E = Al, Ga), respectively. All compounds have been fully characterized by (1)H, (13)C, and (31)P NMR spectroscopy, elemental analysis and single crystal X-ray diffraction studies.  相似文献   

18.
Examination of the Y[N(SiMe(3))(2)](3)/KC(8) reduction system that allowed isolation of the (N(2))(3-) radical has led to the first evidence of Y(2+) in solution. The deep-blue solutions obtained from Y[N(SiMe(3))(2)](3) and KC(8) in THF at -35 °C under argon have EPR spectra containing a doublet at g(iso) = 1.976 with a 110 G hyperfine coupling constant. The solutions react with N(2) to generate (N(2))(2-) and (N(2))(3-) complexes {[(Me(3)Si)(2)N](2)(THF)Y}(2)(μ-η(2):η(2)-N(2)) (1) and {[(Me(3)Si)(2)N](2)(THF)Y}(2)(μ-η(2):η(2)-N(2))[K(THF)(6)] (2), respectively, and demonstrate that the Y[N(SiMe(3))(2)](3)/KC(8) reaction can proceed through an Y(2+) intermediate. The reactivity of (N(2))(3-) radical with proton sources was probed for the first time for comparison with the (N(2))(2-) and (N(2))(4-) chemistry. Complex 2 reacts with [Et(3)NH][BPh(4)] to form {[(Me(3)Si)(2)N](2)(THF)Y}(2)(μ-N(2)H(2)), the first lanthanide (N(2)H(2))(2-) complex derived from dinitrogen, as well as 1 as a byproduct, consistent with radical disproportionation reactivity.  相似文献   

19.
Highly efficient electrocatalysts for both hydrogen evolution and hydrogen oxidation have been designed, synthesized, and characterized. The catalysts in their resting states are air-stable, mononuclear nickel(II) complexes containing cyclic diphosphine ligands with nitrogen bases incorporated into the ligand backbone. X-ray diffraction studies have established that the cation of [Ni(P(Ph)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2), 6a, (where P(Ph)(2)N(Ph)(2) is 1,3,5,7-tetraphenyl-1,5-diaza-3,7-diphosphacyclooctane) is a trigonal bipyramid with bonds to four phosphorus atoms of the two bidentate diphosphine ligands and the nitrogen atom of an acetonitrile molecule. Two of the six-membered rings formed by the diphosphine ligands and Ni have boat conformations with an average Ni- - -N distance to the two pendant bases of 3.4 A. The cation of [Ni(P(Cy)(2)N(Bz)(2))(2)](BF(4))(2), 6b, (where Cy = cyclohexyl and Bz = benzyl) is a distorted square planar complex. For 6b, all four six-membered rings formed upon coordination of the diphosphine ligands to the metal are in the boat form. In this case, the average Ni- - -N distance to the pendant base is 3.3 A. Complex 6a is an electrocatalyst for hydrogen production in acidic acetonitrile solutions, and compound 6b is an electrocatalyst for hydrogen oxidation in basic acetonitrile solutions. It is demonstrated that the high catalytic rates observed with these complexes are a result of the positioning of the nitrogen base so that it plays an important role in the formation and cleavage of the H-H bond.  相似文献   

20.
The preparation and comprehensive characterization of a series of homoleptic sandwich complexes containing diphosphacyclobutadiene ligands are reported. Compounds [K([18]crown-6)(thf)(2)][Fe(η(4)-P(2)C(2)tBu(2))(2)] (K1), [K([18]crown-6)(thf)(2)][Co(η(4)-P(2)C(2)tBu(2))(2)] (K2), and [K([18]crown-6)(thf)(2)][Co(η(4)-P(2)C(2)Ad(2))(2)] (K3, Ad = adamantyl) were obtained from reactions of [K([18]crown-6)(thf)(2)][M(η(4)-C(14)H(10))(2)] (M = Fe, Co) with tBuC[triple bond]P (1, 2), or with AdC[triple bond]P (3). Neutral sandwiches [M(η(4)-P(2)C(2)tBu(2))(2)] (4: M = Fe 5: M = Co) were obtained by oxidizing 1 and 2 with [Cp(2)Fe]PF(6). Cyclic voltammetry and spectro-electrochemistry indicate that the two [M(η(4)-P(2)C(2)tBu(2))(2)](-)/[M(η(4)-P(2)C(2)tBu(2))(2)] moieties can be reversibly interconverted by one electron oxidation and reduction, respectively. Complexes 1-5 were characterized by multinuclear NMR, EPR (1 and 5), UV/Vis, and M?ssbauer spectroscopies (1 and 4), mass spectrometry (4 and 5), and microanalysis (1-3). The molecular structures of 1-5 were determined by using X-ray crystallography. Essentially D(2d)-symmetric structures were found for all five complexes, which show the two 1,3-diphosphacyclobutadiene rings in a staggered orientation. Density functional theory calculations revealed the importance of covalent metal-ligand π bonding in 1-5. Possible oxidation state assignments for the metal ions are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号