首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An intermediate surfactant-templated silica (STS) layer is applied between the supporting mesoporous γ-Al2O3 and the amorphous microporous silica overlayer resulting in dual-layered microporous silica membranes for gas separation applications that show improved values for both hydrogen flux and selectivity. Determination of thickness and porosity of as-deposited membrane layers by spectroscopic ellipsometry reveals that the STS layer is present as a distinctive layer of ~20 nm thickness, with penetration up to a depth of ~70 nm into the underlying γ-Al2O3support layer, whose thickness and porosity are determined to be 1.3 μm and 50%, respectively.  相似文献   

2.
A highly ordered inorganic electrolyte based on 12-tungstophosphoric acid (H(3)PW(12)O(40), abbreviated as HPW or PWA)-silica mesoporous nanocomposite was synthesized through a facile one-step self-assembly between the positively charged silica precursor and negatively charged PW(12)O(40)(3-) species. The self-assembled HPW-silica nanocomposites were characterized by small-angle XRD, TEM, nitrogen adsorption-desorption isotherms, ion exchange capacity, proton conductivity and solid-state (31)P NMR. The results show that highly ordered and uniform nanoarrays with long-range order are formed when the HPW content in the nanocomposites is equal to or lower than 25 wt%. The mesoporous structures/textures were clearly presented, with nanochannels of 3.2-3.5 nm in diameter. The (31)P NMR results indicates that there are (≡SiOH(2)(+))(H(2)PW(12)O(40)(-)) species in the HPW-silica nanocomposites. A HPW-silica (25/75 w/o) nanocomposite gave an activation energy of 13.0 kJ mol(-1) and proton conductivity of 0.076 S cm(-1) at 100 °C and 100 RH%, and an activation energy of 26.1 kJ mol(-1) and proton conductivity of 0.05 S cm(-1) at 200 °C with no external humidification. A fuel cell based on a 165 μm thick HPW-silica nanocomposite membrane achieved a maximum power output of 128.5 and 112.0 mW cm(-2) for methanol and ethanol fuels, respectively, at 200 °C. The high proton conductivity and good performance demonstrate the excellent water retention capability and great potential of the highly ordered HPW-silica mesoporous nanocomposites as high-temperature proton exchange membranes for direct alcohol fuel cells (DAFCs).  相似文献   

3.
A method for the production of near-monodispersed spherical silica particles with controllable porosity based on the formation of uniform emulsion droplets using membrane emulsification is described. A hydrophobic metal membrane with a 15 μm pore size and 200 μm pore spacing was used to produce near-monodispersed droplets, with a mean size that could be controlled between 65 and 240 μm containing acidified sodium silicate solution (with 4 and 6 wt % SiO(2)) in kerosene. After drying and shrinking, the final silica particles had a mean size in the range between 30 and 70 μm. The coefficient of variation for both the droplets and the particles did not exceed 35%. The most uniform particles had a mean diameter of 40 μm and coefficient of variation of 17%. By altering the pH of the sodium silicate solution and aging the gel particles in water or acetone, the internal structure of the silica particles was successfully modified, and both micro- and mesoporous near-monodispersed spherical particles were produced with an average internal pore size between 1 and 6 nm and an average surface area between 360 and 750 m(2) g(-1). A material balance and particle size analysis provided identical values for the internal voidage of the particles, when compared to the voidage as determined by BET analysis.  相似文献   

4.
There is no technology available to support failing lung function for patients outside the hospital. An implantable lung assist device would augment lung function as a bridge to transplant or possible destination therapy. Utilizing biomimetic design principles, a microfluidic vascular network was developed for blood inflow from the pulmonary artery and blood return to the left atrium. Computational fluid dynamics analysis was used to optimize blood flow within the vascular network. A micro milled variable depth mold with 3D features was created to achieve both physiologic blood flow and shear stress. Gas exchange occurs across a thin silicone membrane between the vascular network and adjacent alveolar chamber with flowing oxygen. The device had a surface area of 23.1 cm(2) and respiratory membrane thickness of 8.7 ± 1.2 μm. Carbon dioxide transfer within the device was 156 ml min(-1) m(-2) and the oxygen transfer was 34 ml min(-1) m(-2). A lung assist device based on tissue engineering architecture achieves gas exchange comparable to hollow fiber oxygenators yet does so while maintaining physiologic blood flow. This device may be scaled up to create an implantable ambulatory lung assist device.  相似文献   

5.
在强酸性条件下, 以三嵌段聚醚P123为模板, 合成了孔径大且粒径均匀的SBA-15介孔二氧化硅微球. 将含有少量三乙氧硅丙基氨基甲酸酯残基的纤维素-三(3,5-二甲基苯基氨基甲酸酯)通过分子间缩聚作用固载到氨丙基化的SBA-15微球上, 制得手性固定相; 采用常规和非常规的流动相模式, 对一些芳香醇的消旋体进行了手性拆分. 实验结果表明, 所制备的SBA-15微球不仅分散性良好, 具有规则的二维六方孔道结构, 而且消除了微孔; 所制备的键合手性固定相不仅固载手性选择剂的量大, 而且经六甲基二硅胺烷封端后可有效改善拖尾现象, 对实验选用的手性醇具有较高的拆分能力; 与大孔硅胶为基质的同类纤维素键合手性固定相相比, 该固定相对同种手性消旋体的分离因子明显提高.  相似文献   

6.
A mesoporous Co(3)O(4) core/mesoporous silica shell composite with a variable shell thickness of 10-35 nm was fabricated by depositing silica on Co(3)O(4) superlatticed particles. The Brunauer-Emmett-Teller (BET) surface area of the composite with a shell thickness of ca. 2.0 nm was 238.6 m(2)/g, which varied with the shell thickness, and the most frequent pore size of the shell was ca. 2.0 nm. After the shell was eroded with hydrofluoric acid, mesoporous Co(3)O(4) particles with a pore size of ca. 8.7 nm could be obtained, whose BET surface area was 86.4 m(2)/g. It is proposed that in the formation of the composite the electropositive cetyltrimethylammonium bromide (CTAB) micelles were first adsorbed on the electronegative Co(3)O(4) particle surface, which directed the formation of the mesoporous silica on the Co(3)O(4) particle surface. Electrochemical measurements showed that the core/shell composites exhibited a higher discharge capacity compared with that of the bare Co(3)O(4) particles.  相似文献   

7.
可用于色谱固定相的介孔氧化硅球材料的合成   总被引:6,自引:0,他引:6  
雷杰  余承忠  范杰  闫妍  屠波  赵东元 《化学学报》2005,63(8):739-744
采用非离子型嵌段高分子表面活性剂EO20PO30EO20 (P65)为结构导向剂, 正硅酸乙酯为硅源, 在酸性介质中, 静置法制备了微米级介孔氧化硅球. 通过改变合成温度、反应时间或者无机盐KCl的加入量, 可以调节介孔氧化硅球的直径(9.0~17.6 μm); 加入1,3,5-三甲苯(TMB)或者调节水热温度, 可以调节介孔氧化硅球的孔径(2.3~4.8 nm). 采用X射线衍射(XRD)、N2吸附-脱附、扫描电镜(SEM)、激光散射粒度分布和对溶菌酶的吸附等方法, 对介孔氧化硅球的结构、孔性质、形貌、吸附性质等进行了表征. 实验发现, 孔径较小的介孔氧化硅球(≤4.3 nm)对溶菌酶的吸附不明显(≤42 mg/g), 而孔径(4.8 nm)大于溶菌酶直径的材料对溶菌酶有较大的吸附量(192 mg/g), 说明孔径均匀可调的介孔氧化硅球材料可以很好地用作体积排阻色谱柱的固定相.  相似文献   

8.
Microspheres composited with mesoporous SBA-15 particles and silica were investigated as fillers in miniature loudspeakers to study the factors influencing the resonance frequency offsets(RFOs). Mesoporous silica microspheres(MSMs) were prepared by self-assembling SBA-15 mesoporous silica in a microemulsion synthesis system. The formation process involved the fabrication of a stable O/W microemulsion of tetrabutyl orthosilicate(TBOS) and hexadecyltrimethylammonium bromide(C16TAB) and encapsulation of SBA-15s. The RFO increased and then decreased with increasing particle size(in the length range of 0.7-5.5 μm and in the width range of 0.2-0.45 μm), increased with increasing pore size(in the range of 7.0-9.4 nm) of SBA-15s, and increased with decreasing particle size(105-900 μm) of MSMs.  相似文献   

9.
A Schiff base (SB) immobilized hybrid mesoporous silica membrane (SB-HMM) was prepared by immobilizing a Schiff base onto the pore surface of mesoporous silica (pore size=3.1 nm) embedded in the pores of a porous anodic alumina membrane. In contrast to the non-fluorescent analogous SB molecule in homogeneous solutions, SB-HMM exhibited intense fluorescence due to emission enhancement caused by aggregation of SB groups on the pore surface. The high quantum efficiency of the surface SB groups allows SB-HMM to function as a fluorescent sensor for Cu(II) ions in an aqueous solution with good sensitivity, selectivity and reproducibility. Under the optimal conditions described, the linear ranges of fluorescence intensity for Cu(II) are 1.2-13.8(M (R(2)=0.993) and 19.4-60 (R(2)=0.992) (M. The limit of detection for Cu(II) is 0.8 μM on basis of the definition by IUPAC (C(LOD)=3.3S(b)/m).  相似文献   

10.
We report for the first time the synthesis of free-standing mesoporous carbon films with highly ordered pore architecture by a simple coating-etching approach, which have an intact morphology with variable sizes as large as several square centimeters and a controllable thickness of 90 nm to ~3 μm. The mesoporous carbon films were first synthesized by coating a resol precursors/Pluronic copolymer solution on a preoxidized silicon wafer and forming highly ordered polymeric mesostructures based on organic-organic self-assembly, followed by carbonizing at 600 °C and finally etching of the native oxide layer between the carbon film and the silicon substrate. The mesostructure of this free-standing carbon film is confirmed to be an ordered face-centered orthorhombic Fmmm structure, distorted from the (110) oriented body-centered cubic Im3?m symmetry. The mesoporosity of the carbon films has been evaluated by nitrogen sorption, which shows a high specific BET surface area of 700 m(2)/g and large uniform mesopores of ~4.3 nm. Both mesostructures and pore sizes can be tuned by changing the block copolymer templates or the ratio of resol to template. These free-standing mesoporous carbon films with cracking-free uniform morphology can be transferred or bent on different surfaces, especially with the aid of the soft polymer layer transfer technique, thus allowing for a variety of potential applications in electrochemistry and biomolecule separation. As a proof of concept, an electrochemical supercapacitor device directly made by the mesoporous carbon thin films shows a capacitance of 136 F/g at 0.5 A/g. Moreover, a nanofilter based on the carbon films has shown an excellent size-selective filtration of cytochrome c and bovine serum albumin.  相似文献   

11.
The bienzyme system consisting of glucose oxidase and gluconolactonase was investigated using a conventional diffusion-kinetics model for an enzyme-modified field-effect transistor (FET) to clarify the effect of gluconolactonase coimmobilization in a glucose oxidase membrane on the steady-state response amplitude of a glucose sensor based on a FET. The model includes spontaneous and enzymatic hydrolysis reactions of d-glucono-δ-lactone and it elucidated the following experimental results: a glucose sensor with a membrane (about 1 μm in thickness) coimmobilizing these enzymes showed a sufficient response amplitude, whereas without coimmobilization of gluconolactonase no detectable response was observed up to 3 mM glucose; and the response amplitude depended strongly on the amount of lactonase in the membrane. The model also predicted an optimum enzyme ratio for coimmobilization in a membrane.  相似文献   

12.
A facile method for introducing mesoporous silica sublayer onto the surface of a ceramic membrane for use in liquid-phase separation is described. To reduce the electrostatic repulsion between the mesoporous silica sol and the ceramic membrane in highly acidic conditions (pH < 2), thus facilitating the approach of hydrolyzed silica sol to the surface of the membrane, poly(sodium 4-styrenesulfonate) (Na+PSS-, denoted as PSS-) was used as an ionic linker. The use of PSS- led to a significant reduction in positive charge on the ceramic membrane, as confirmed by experimental titration data. Consistent with the titration results, the amount of mesoporous silica particles on the surface of the ceramic membrane was low, in the absence of PSS- treatment, whereas mesoporous silica sublayer with hierarchical pore structure was produced, when 1 wt % PSS- was used. The results show that mesoporous silica grows in the confined surface, eventually forming a multistacked surface architecture. The mesoporous silica sublayer contained uniform, ordered (P6 mm) mesopores of ca. 7.5 nm from mesoporous silica as well as macropores ( approximately mum) from interparticle voids, as evidenced by transmission electron microscopy and scanning electron microscopy analyses. The morphologies of the supported mesoporous silica could be manipulated, thus permitting the generation of uniform needlelike forms or uniform spheroid particles by varying the concentration of PSS-.  相似文献   

13.
Herein, to mimic complex natural system, polyelectrolyte multilayer (PEM)‐coated mesoporous silica nanoreactors were used to compartmentalize two different artificial enzymes. PEMs coated on the surface of mesoporous silica could serve as a permeable membrane to control the flow of molecules. When assembling hemin on the surface of mesoporous silica, the hemin‐based mesoporous silica system possessed remarkable peroxidase‐like activity, especially at physiological pH, and could be recycled more easily than traditional graphene–hemin nanocompounds. The hope is that these new findings may pave the way for exploring novel nanoreactors to achieve compartmentalization of nanozymes and applying artificial cascade catalytic systems to mimic cell organelles or important biochemical transformations  相似文献   

14.
A series of hierarchically mesostructured silica nanoparticles (MSNs) less than 100 nm in size were fabricated by means of a one-step synthesis using dodecanethiol (C(12)-SH) and cetyltrimethylammonium bromide (CTAB) as the dual template, and trimethylbenzene (TMB) as the swelling agent. Silica nanoparticles with varied morphologies and structures, including mesoporous silica nanoparticles with tunable pore size, mesoporous silica nanoparticles with a thin solid shell, hollow mesoporous silica nanoparticles with tunable cavity size, and hollow mesoporous silica nanoparticles with a thin solid shell, were obtained by regulating the TMB/CTAB molar ratio and the stirring rate with the assistance of C(12)-SH. Silica particulate coatings were successfully fabricated by using MSNs with varied morphologies and structures as building block through layer-by-layer dip-coating on glass substrates. The thickness and roughness of the silica particulate coatings could be tailored by regulating the deposition cycles of nanoparticles. The silica particulate coatings composed of hollow mesoporous silica nanoparticles with a thin shell (S2) increased the maximum transmittance of slide glass from 90 to 96%, whereas they reduced its minimum reflection from 8 to 2% at the optimized wavelength region that could be adjusted from visible to near-IR with a growing number of deposition cycles. The coatings also exhibited excellent superhydrophilic and antifogging properties. These mesostructured silica nanoparticles are also expected to serve as ideal scaffolds for biological, medical, and catalytic applications.  相似文献   

15.
The synthesis and characterization of alumina-mesoporous silica (alumina-MS) hybrid membranes are reported. The hybrids are formed using a variation of the evaporative-induced self-assembly (EISA) process reported by Hayward et al. (Langmuir 2004, 20, 5998) based on dip coating of an Anopore 200 nm membrane with a Brij-56/TEOS/HCl/H2O solution. Numerous analytical methods are used to probe both the hybrid material and the silica phase after dissolution of the Anopore substrate. Most importantly, He/N2 permeation measurements show that the effective pore size of the membrane can be tuned from 20 to 5 nm based on the number of dip-coating cycles used. The observed He/N2 permselectivity of 2.7 +/- 0.11 is nearly identical to the theoretical value obtained (2.65) assuming Knudsen diffusion dominates. The selectivity of these membranes is higher than that of most commercial "5 nm" membranes (2.29), which is ascribed to the lack of pinhole defects in the materials reported here. The hybrid membranes as well as the silica obtained after dissolution of the Anopore substrate have been characterized using scanning and transmission electron microscopy and X-ray diffraction. Those results indicate that the silica deposited in the Anopore membrane possesses uniform pores approximately 5 nm in size, consistent with the permeation studies. The current work presents an alternative approach to materials that possess many of the properties of mesoporous silica thin films (i.e., pores of controlled size and topology) without the difficulty of growing mesoporous silica thin films on porous supports.  相似文献   

16.
A novel proton exchange membrane using phosphotungstic acid (HPW) as proton carrier and cubic bicontinuous Ia3d mesoporous silica (meso-silica) as framework material is successfully developed as proton exchange membranes for fuel cells. Meso-silica is functionalized by 80wt% HPW using a vacuum impregnation method. The HPW-functionalized meso-silica (HPW-meso-silica) nanocomposites are characterized by transmission electron microscopy (TEM), small angle X-ray scattering (SAXS), N(2) adsorption/desorption isotherms, thermogravimetric analysis (TGA), water uptake and four-probe conductivity. The results show that the mesoporous structure of silica hosts can be altered by the hydrothermal temperature. Conductivity measurements indicate that meso-silica host with pore diameter of 5.0 nm has the highest proton conductivity of 0.11 S cm(-1) at 80 °C and 100% relative humidity (RH) with an activation energy of ~14 kJ mol(-1) and better stability as compared to that with large mesopores. The proton conductivity and performance of HPW-meso-silica nanocomposites also increase with the RH, but it is far less sensitive to RH changes as compared to conventional perfluorosulfonic acid (PFSA) polymers such as Nafion. The maximum power density of the cell with HPW-meso-silcia nanocomposite membranes is 221 mW cm(-2) at 80 °C and 100% RH and decreases to 171 mW cm(-2) when RH is reduced to 20%, a 20% decrease in power output. In the case of a cell with Nafion 115 membranes, the decrease in power density is 95% under identical test conditions. The results demonstrate that the HPW-meso-silica nanocomposite has an exceptionally high water retention capability and is a promising proton exchange membrane material for fuel cells operating at reduced humidity and elevated temperatures.  相似文献   

17.
Herein, we demonstrate that silica films with perpendicular macroporous channels and accessible ordered mesopores can be conveniently prepared. The hierarchical macroporous–mesoporous silica films are synthesized by using zinc oxide nanorod array as macroporous template and CTAB surfactant as mesoporous template. In basic surfactant-containing solution, ordered mesoporous silica shells homogeneously grow on the zinc oxide nanorod array. The growth of the mesostructures do not require any chemical modification for the zinc oxide nanorod, which opens a new way for preparing hierarchical silica films with perpendicular mesochannels. The prepared hierarchical macroporous–mesoporous silica films possess a uniform thickness of 2 mm, large perpendicular macropores with a length of 1.8 mm and a width of 80 nm, and accessible ordered mesopores. Separation experiment demonstrates that this macroporous–mesoporous film can effectively separate biomolecules with different sizes.  相似文献   

18.
“Noodle-like” mesoporous silica with a diameter of about 180 nm and a length of ca. 10μm was prepared through sol-gel process by using poly(sodium 4-styrenesulfonate) (PSS)/cetyltrimethylammonium bromide (CTAB) complex as template. Parallel oriented regular mesopores with a diameter of around 2-4 nm are distributed along the wall of the particles, while the “worm-like” disordered mesopores can be found in the fringe part. This approach provides a new series of templates and a novel route to prepare inorganic mesoporous materials with special morphology.  相似文献   

19.
Developments of high-performance cost-effective electrocatalyts that can replace Pt catalysts have been a central theme in polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs). In this direction, nitrogen-doped carbon nanostructures free of metallic components have attracted particular attention. Here we show that directing graphitic carbon nitride frameworks into mesoporous architecture can generate a highly promising metal-free electrocatalyst for an oxygen reduction reaction (ORR) in an acidic medium. The ordered mesoporous carbon nitride (OMCN) was synthesized with a nanocasting strategy using ordered mesoporous silica as a template. A variety of characterizations revealed that the OMCN is constructed with graphitic carbon nitride frameworks and ordered arrays of uniform mesopores. The OMCN showed significantly enhanced electrocatalytic activity for ORR compared to bulk carbon nitride and ordered mesoporous carbon in terms of the current density and onset potential. A high surface area and an increased density of catalytically active nitrogen groups in the OMCN appear to contribute concomitantly to the enhanced performance of the OMCN. Furthermore, the OMCN exhibited superior durability and methanol tolerance to a Pt/C catalyst, suggesting its widespread utilization as an electrocatalyst for PEMFCs and DMFCs.  相似文献   

20.
We investigated the achievable separation performance of a 9-cm-long and 1-mm-wide pillar array channel (volume = 0.6 μL) containing 5 μm diameter Si pillars (spacing 2.5 μm) cladded with a mesoporous silica layer with a thickness of 300 nm, when this channel is directly interfaced to a capillary LC instrument. The chip has a small footprint of only 4 cm × 4 mm and the channel consists of three lanes that are each 3 cm long and that are interconnected using low dispersion turns consisting of a narrow U-turn (10 μm), proceded and preceded by a diverging flow distributor. Measuring the band broadening within a single lane and comparing it to the total channel band broadening, the additional band broadening of the turns can be estimated to be of the order of 0.5 μm around the minimum of the van Deemter curve, and around some 1 μm (nonretained species) and 2 μm (retained species) in the C-term dominated regime. The overall performance (chip + instrument) was evaluated by conducting gradient elution separations of digests of cytochrome c and bovine serum albumin. Peak capacities up to 150 could be demonstrated, nearly completely independent of the flow rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号