首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrochemistry of 1,1′-bis(diphenylphosphino)cobaltocenium hexafluorophosphate ([dppc][PF6]), 1,1′-bis(dicyclohexylphosphino)cobaltocenium hexafluorophosphate ([dcpc][PF6]), 1,1′-bis(di-iso-propylphosphino)cobaltocenium hexafluorophosphate ([dippc][PF6]), and 1-(di-tert-butylphosphino)cobaltocenium hexafluorophosphate ([1-dtbpc][PF6]) was examined in methylene chloride with tetrabutylammonium hexafluorophosphate as the supporting electrolyte. A reversible reductive wave followed by an irreversible wave at more negative potentials was observed. Ten new phosphinothioyl ([dppcS2][PF6], [dcpcS2][PF6], [dippcS2][PF6], [1-dtbpcS][PF6], and 1,1′-bis(dicyclohexylphosphinothioyl)ferrocene) and phosphinoselenoyl derivatives ([dppcSe2][PF6], [dcpcSe2][PF6], [dippcSe2][PF6], [1-dtbpcSe][PF6], and 1,1′-bis(dicyclohexylphosphinoselenoyl)ferrocene) were prepared and characterized, and the structures of eight of these compounds were determined. The electrochemistry of these phosphinochalcogenyl cobaltocenium compounds, as well as the previously prepared [dppcO2][PF6], displayed two reversible reductive waves at potentials less negative than that of the free phosphines. A correlation was found to exist between the Hammett substituent constant σp and the reduction potentials of these compounds. In addition, the phosphinoselenoyl [dppcSe2][PF6], [dcpcSe2][PF6], and [dippcSe2][PF6] displayed an electrochemically irreversible oxidative wave, potentially indicating an intramolecular Se-Se bonded trication. The electrochemistry of three new and five previously reported transition metal complexes of the general formula [MnCl2(PP)][PF6] (M = Pd or Pt, n = 1, PP = dppc, dcpc or dippc; M = Au, n = 2, PP = dppc or dcpc)) was also examined displaying at least two reductive waves at potentials less negative than that of the free phosphines. Comparison of the electrochemical data with that previously obtained for analogous ferrocenes indicates that a correlation exists between the reduction potentials of the cobaltocenium phosphines and the potentials at which oxidation of the ferrocene phosphines occurs. In addition, the structure of [Au2Cl2(dppc)][PF6] was determined.  相似文献   

2.
The formation of complexes between hexafluorophosphate (PF6) and tetraisobutyloctahydroxypyridine[4]arene has been thoroughly studied in the gas phase (ESI‐QTOF‐MS, IM‐MS, DFT calculations), in the solid state (X‐ray crystallography), and in chloroform solution (1H, 19F, and DOSY NMR spectroscopy). In all states of matter, simultaneous endo complexation of solvent molecules and exo complexation of a PF6 anion within a pyridine[4]arene dimer was observed. While similar ternary complexes are often observed in the solid state, this is a unique example of such behavior in the gas phase.  相似文献   

3.
Thiacalix[4]arene 2 , calix[4]arene 3 a and its tetraether fixed in the cone conformation 3 b form homo‐ and heterodimeric capsules in apolar solvents, which are held together by a seam of NH???O=P hydrogen bonds between carbamoylmethyl phospine oxide functions attached to their wide rim. Their internal volume of ~370 Å3 requires the inclusion of a suitable guest. Although neutral molecules such as adamantane (derivatives) or tetraethylammonium cations form kinetically stable complexes (1H‐ and 31P‐time scale), the included solvent is rapidly exchanged. The internal mobility of the included tetraethylammonium cation is distinctly higher (ΔG=42.5 and 49.7 kJ mol?1 for 3 a and 3 b ) than that for similar capsules of tetraurea calix[4]arenes 1 . Mixtures of 1 with 2 , 3 a , or 3 b contain only the two homodimers but the heterodimerization occurs with the tetraloop tetraurea 6 , which cannot form homodimers. Two dimers with cationic guests ( 2? (C5H5)2Co+ ?2 and 3 a? Et3NH+ ? H2O ?3 a ) were confirmed by single‐crystal X‐ray analysis.  相似文献   

4.
Treatment of [Cp*(dppe)Fe? C?C‐TTFMe3] ( 1 ) with Ag[PF6] (3 equiv) in DMF provides the binuclear complex [Cp*(dppe)Fe?C?C?TTFMe2?CH? CH?TTFMe2?C?C=Fe(dppe)Cp*][PF6]2 ( 2 [PF6]2) isolated as a deep‐blue powder in 69 % yield. EPR monitoring of the reaction and comparison of the experimental and calculated EPR spectra allowed the identification of the radical salt [Cp*(dppe)Fe?C?C?TTFMe2?CH][PF6]2 ([ 1‐CH ][PF6]) an intermediate of the reaction, which results from the activation of the methyl group attached in vicinal position with respect to the alkynyl–iron on the TTF ligand by the triple oxidation of 1 leading to its deprotonation by the solvent. The dimerization of [ 1‐CH ][PF6] through carbon–carbon bond formation provides 2 [PF6]2. The cyclic voltammetry (CV) experiments show that 2 [PF6]2 is subject to two sequential well‐reversible one‐electron reductions yielding the complexes 2 [PF6] and 2 . The CV also shows that further oxidation of 2 [PF6]2 generates 2 [PF6]n (n=3–6) at the electrode. Treatment of 2 [PF6]2 with KOtBu provides 2 [PF6] and 2 as stable powders. The salts 2 [PF6] and 2 [PF6]2 were characterized by XRD. The electronic structures of 2 n+ (n=0–2) were computed. The new complexes were also characterized by NMR, IR, Mössbauer, EPR, UV/Vis and NIR spectroscopies. The data show that the three complexes 2 [PF6]n are iron(II) derivatives in the ground state. In the solid state, the dication 2 2+ is diamagnetic and has a bis(allenylidene‐iron) structure with one positive charge on each iron building block. In solution, as a result of the thermal motion of the metal–carbon backbone, the triplet excited state becomes thermally accessible and equilibrium takes place between singlet and triplet states. In 2 [PF6], the charge and the spin are both symmetrically distributed on the carbon bridge and only moderately on the iron and TTFMe2 electroactive centers.  相似文献   

5.
The bonding modes of the ligand di‐2‐pyridyl ketoxime towards half‐sandwich arene ruthenium, Cp*Rh and Cp*Ir complexes were investigated. Di‐2‐pyridyl ketoxime {pyC(py)NOH} react with metal precursor [Cp*IrCl2]2 to give cationic oxime complexes of the general formula [Cp*Ir{pyC(py)NOH}Cl]PF6 ( 1a ) and [Cp*Ir{pyC(py)NOH}Cl]PF6 ( 1b ), for which two coordination isomers were observed by NMR spectroscopy. The molecular structures of the complexes revealed that in the major isomer the oxime nitrogen and one of the pyridine nitrogen atoms are coordinated to the central iridium atom forming a five membered metallocycle, whereas in the minor isomer both the pyridine nitrogen atoms are coordinated to the iridium atom forming a six membered metallacyclic ring. Di‐2‐pyridyl ketoxime react with [(arene)MCl2]2 to form complexes bearing formula [(p‐cymene)Ru{pyC(py)NOH}Cl]PF6 ( 2 ); [(benzene)Ru{pyC(py)NOH}Cl]PF6 ( 3 ), and [Cp*Rh{pyC(py)NOH}Cl]PF6 ( 4 ). In case of complex 3 the ligand coordinates to the metal by using oxime nitrogen and one of the pyridine nitrogen atoms, whereas in complex 4 both the pyridine nitrogen atoms are coordinated to the metal ion. The complexes were fully characterized by spectroscopic techniques.  相似文献   

6.
The reaction of [(η5‐L3)Ru(PPh3)2Cl], where; L3 = C9H7 ( 1 ), C5Me5 (Cp*) ( 2 ) with acetonitrile in the presence of [NH4][PF6] yielded cationic complexes [(η5‐L3)Ru(PPh3)2(CH3CN)][PF6]; L3= C9H7 ([3]PF6) and L3 = C5Me5 ([4]PF6), respectively. Complexes [3]PF6 and [4]PF6 reacts with some polypyridyl ligands viz, 2,3‐bis (α‐pyridyl) pyrazine (bpp), 2,3‐bis (α‐pyridyl) quinoxaline (bpq) yielding the complexes of the formulation [(η5‐L3)Ru(PPh3)(L2)]PF6 where; L3 = C9H7, L2 = bpp, ([5]PF6), L3 = C9H7, L2 = bpq, ([6]PF6); L3 = C5Me5, L2 = bpp, ([7]PF6) and bpq, ([8]PF6), respectively. However reaction of [(η5‐C9H7)Ru(PPh3)2(CH3CN)][PF6] ([3]PF6) with the sterically demanding polypyridyl ligands, viz. 2,4,6‐tris(2‐pyridyl)‐1,3,5‐triazine (tptz) or tetra‐2‐pyridyl‐1,4‐pyrazine (tppz) leads to the formation of unexpected complexes [Ru(PPh3)2(L2)(CH3CN)][PF6]2; L2 = tppz ([9](PF6)2), tptz ([11](PF6)2) and [Ru(PPh3)2(L2)Cl][PF6]; L2 = tppz ([10]PF6), tptz ([12]PF6). The complexes were isolated as their hexafluorophosphate salts. They have been characterized on the basis of micro analytical and spectroscopic data. The crystal structures of the representative complexes were established by X‐ray crystallography.  相似文献   

7.
《化学:亚洲杂志》2017,12(19):2576-2582
Complexation between (O ‐methyl)6‐2,6‐helic[6]arene and a series of tertiary ammonium salts was described. It was found that the macrocycle could form stable complexes with the tested aromatic and aliphatic tertiary ammonium salts, which were evidenced by 1H NMR spectra, ESI mass spectra, and DFT calculations. In particular, the binding and release process of the guests in the complexes could be efficiently controlled by acid/base or chloride ions, which represents the first acid/base‐ and chloride‐ion‐responsive host–guest systems based on macrocyclic arenes and protonated tertiary ammonium salts. Moreover, the first 2,6‐helic[6]arene‐based [2]rotaxane was also synthesized from the condensation between the host–guest complex and isocyanate.  相似文献   

8.
离子液体型表面活性剂研究   总被引:2,自引:0,他引:2  
易封萍  李积宗  陈斌 《化学学报》2008,66(2):239-244
以1-甲基咪唑为原料, 制备了6个常规离子液体: 1-正丁基-3-甲基咪唑四氟硼酸盐及六氟磷酸盐(简称[bmim][BF4]及[bmim][PF6])、1-正己基-3-甲基咪唑四氟硼酸盐及六氟磷酸盐(简称[hmim][BF4]及[hmim][PF6])、1-正十六烷基-3-甲基咪唑四氟硼酸盐及六氟磷酸盐(简称[C16mim][BF4]及[C16mim][PF6])和4个功能化离子液体: 1-(2-羟乙基)-3-甲基咪唑四氟硼酸盐及六氟磷酸盐(简称[2-hemim][BF4]及[2-hemim][PF6])、1-乙氧羰基甲基-3-甲基咪唑四氟硼酸盐及六氟磷酸盐(简称[eocmmim][BF4]及[eocmmim][PF6]). 研究了这两类离子液体的一些物理性能, 旨在挖掘离子液体在香料香精化妆品工业中的应用价值. 分别检测了它们与一般溶剂的互溶性, 并测定了它们的表面张力和发泡性能, 实验结果表明, 仅[C16mim][BF4]和[C16mim][PF6]具有发泡性能, 发泡力分别为68和120 mm.  相似文献   

9.
Abstract

To gain information on CH-π aromatic interactions involved in the formation of host-guest adducts, the geometrical parameters which define the solid state structures of the complexes of calix[4]arenes in the cone conformation with guests having acid CH3 or CH2 groups have been studied. Most of the data have been obtained from the CH3CN and CH2Cl2 calix[4]arene complexes retrieved from the literature. To understand the effect of the acidity on these parameters, p-cyclohexylcalix[4]arene-biscrown-3 ? CH3CN, p-tert-butylthiacalix[4]arene ? CH3CN, p-tert-butylthiacalix[4]arene ? CH3NO2, 1,3-dipropoxy-p-tert-butylcalix[4]arene ? ClCH2CN and 1,3-dipropoxy-p-tert-butylcalix[4]arene ? CH2(CN)2 complexes were prepared, crystallised and investigated in the solid state. CH3X guests are bound preferentially by hosts having a C4 symmetry. The interaction is directional, but it is independent from the basicity of the host and acidity of the guest, indicating that classic hydrogen bond do not play a major role. On the contrary CH2XY guests find the best matching with hosts having a C2v symmetry, interacting specifically with two diametrical aromatic rings. These interactions are directional and show a correlation between the acidity of the guest and the CH-π aromatic distance, thus supporting a stronger contribution of “classic” hydrogen bond in these latter complexes. These results are in agreement with the hypothesis that CH-π aromatic interactions derive from the superimposition of different types of intermolecular forces, whose contribution depends on several factors as the nature of the interacting partners.  相似文献   

10.
To design and exploit novel macrocyclic synthetic receptors is a permanent and challenging topic in supramolecular chemistry. Here we describe the one-pot synthesis, unique geometries and intriguing host–guest properties of a new class of supramolecular macrocycles – biphen[n]arenes (n = 3, 4), which are made up of 4,4′-biphenol or 4,4′-biphenol ether units linked by methylene bridges at the 3- and 3′- positions. The biphenarene macrocycles are conveniently accessible/modifiable and extremely guest-friendly. Particularly, biphen[4]arene is capable of forming inclusion complexes with not only organic cationic guests but also neutral π-electron deficient molecules. Compared with calixarenes, resorcinarenes, cyclotriveratrylenes and pillararenes with substituted mono-benzene units, the biphen[n]arenes reported here possess significantly different characteristics in both their topologic structures and their recognition properties, and thus can find broad applications in supramolecular chemistry and other areas.  相似文献   

11.
The heterometallic complexes trans ‐[Cp(dppe)FeNCRu(o ‐bpy)CNFe(dppe)Cp][PF6]n ( 1 [PF6]n , n =2, 3, 4; o ‐bpy=1,2‐bis(2,2′‐bipyridyl‐6‐yl)ethane, dppe=1,2‐bis(diphenylphosphino)ethane, Cp=1,3‐cyclopentadiene) in three distinct states have been synthesized and fully characterized. 1 3+[PF6]3 and 1 4+[PF6]4 are the one‐ and two‐electron oxidation products of 1 2+[PF6]2, respectively. The investigated results suggest that 1 [PF6]3 is a Class II mixed valence compound. 1 [PF6]4 after a thermal treatment at 400 K shows an unusually delocalized mixed valence state of [FeIII‐NC‐RuIII‐CN‐FeII], which is induced by electron transfer from the central RuII to the terminal FeIII in 1 [PF6]4, which was confirmed by IR spectroscopy, magnetic data, and EPR and Mössbauer spectroscopy.  相似文献   

12.
Two generations of lipophilic pyrenyl functionalized poly(benzyl ether) dendrimers (P1 and P2) have been synthesized. The thermal properties of the two functionalized dendrimers have been investigated, and the pyrenyl group of the dendritic molecules encapsulated in the arene–ruthenium metalla‐cage, [Ru6(p‐cymene)6(tpt)2(donq)3]6+ ([ 1 ]6+) (tpt=2,4,6‐tri(pyridin‐4‐yl)‐1,3,5‐triazine; donq=5,8‐dioxydo‐1,4‐naphthoquinonato). The host–guest properties of [P1⊂ 1 ]6+ and [P2⊂ 1 ]6+ were studied in solution by NMR and UV/Vis spectroscopic methods, thus allowing the determination of the affinity constants. Moreover, the cytotoxicity of these water‐soluble host–guest systems was evaluated on human ovarian cancer cells.  相似文献   

13.
As the host possessing the largest cavity in the cucurbit[n]uril (CB[n]) family, CB[10] has previously displayed unusual recognition and assembly properties with guests but much remains to be explored. Herein, we present the recognition properties of CB[10] toward a series of bipyridinium guests including the tetracationic cyclophane known as blue box along with electron‐rich guests and detail the influence of encapsulation on the charge‐transfer interactions between guests. For the mono‐bipyridinium guest (methylviologen, MV 2+), CB[10] not only forms 1:1 and 1:2 inclusion complexes, but also enhances the charge‐transfer interactions between methylviologen and dihydroxynaphthalene ( HN ) by mainly forming the 1:2:1 packed “sandwich” complex (CB[10] ? 2 MV 2+ ?HN ). For guest 1 with two bipyridinium units, an interesting conformational switching from linear to “U” shape is observed by adding catechol to the solution of CB[10] and the guest. For the tetracationic cyclophane‐blue box, CB[10] forms a stable 1:1 inclusion complex; the two bipyridinium units tilt inside the cavity of CB[10] according to the X‐ray crystal structure. Finally, a supramolecular “Russian doll” was built up by threading a guest through the cavities of both blue box and CB[10].  相似文献   

14.
Synthesis and physicochemical properties of four pyridinium‐based ionic liquids (ILs), N‐propylpyridinium bromide [N‐propylPyr]+[Br], N‐isopropylpyridinium bromide [N‐isopropylPyr]+[Br], N‐propylpyridinium hexafluorophosphate [N‐propylPyr]+[PF6], and N‐isopropylpyridinium hexafluorophosphate [N‐isopropylPyr]+[PF6] are reported. The molecular structures of these compounds were characterized by FT‐IR, 1H, 19F, and 31P NMR, spectroscopy. The thermal properties, conductivity, and solubility of these ionic liquids were also investigated. The effects of propyl and isopropyl alkyl lateral chain at the N‐position of pyridinium cation on the thermal stability, conductivity, and solubility of ionic liquids are discussed. The results obtained confirmed that the ionic liquids based on pyridinium cations exhibit higher decomposition temperature, low melting points, immiscible with water, and their conductivities are mainly influenced by mobility of ions.  相似文献   

15.
A simple, rapid and environment‐friendly technique of single‐drop liquid‐phase microextraction has been developed for the determination of sulfonamides in environmental water. Several important parameters including stirring rate, extraction solvent, extraction pH, salinity and extraction time were optimized to maximize the extract efficiency. Extraction solvent 1‐octyl‐3‐methylimidazolium hexafluorophosphate [C8MIM][PF6] ionic liquid showed better extraction efficiency than 1‐butyl‐3‐methylimidazolium hexafluorophosphate [C4MIM][PF6] and 1‐octanol. The optimum experimental conditions were: pH, 4.5; sodium chloride content, 36% w/v; extraction time, 20 min. This method provided low detection limits (0.5–1 ng/mL), good repeatability (the RSD ranging from 4.2 to 9.9%, n=5) and wide linear range (1–1500 ng/mL), with determination coefficients (r2) higher than 0.9989 for all the target compounds. Real sample analysis showed relative recoveries between 63.5 and 115.8% for all the target compounds.  相似文献   

16.
The synthesis, structure and anion binding properties of the first calix[4]arene‐based [2]rotaxane anion host systems are described. Rotaxanes 9? Cl and 12? Cl, consisting of a calix[4]arene functionalised macrocycle wheel and different pyridinium axle components, are prepared via adaption of an anion templated synthetic strategy to investigate the effect of preorganisation of the interlocked host’s binding cavity on anion binding. Rotaxane 12? Cl contains a conformationally flexible pyridinium axle, whereas rotaxane 9? Cl incorporates a more preorganised pyridinium axle component. The X‐ray crystal structure of 9? Cl and solution phase 1H NMR spectroscopy demonstrate the successful interlocking of the calix[4]arene macrocycle and pyridinium axle components in the rotaxane structures. Following removal of the chloride anion template, anion binding studies on the resulting rotaxanes 9? PF6 and 12? PF6 reveal the importance of preorganisation of the host binding cavity on anion binding. The more preorganised rotaxane 9? PF6 is the superior anion host system. The interlocked host cavity is selective for chloride in 1:1 CDCl3/CD3OD and remains selective for chloride and bromide in 10 % aqueous media over the more basic oxoanions. Rotaxane 12? PF6 with a relatively conformationally flexible binding cavity is a less effective and discriminating anion host system although the rotaxane still binds halide anions in preference to oxoanions.  相似文献   

17.
Chemical single‐electron reduction of 1‐mesityl‐2,3,4,5‐tetraphenylborole ( 3 ) gave a stable radical anion [CoCp*2][ 3 ] as shown in earlier investigations. Herein, we present the reaction of [CoCp*2][ 3 ] with the 2,2,6,6‐tetramethylpiperidine‐N‐oxyl radical (TEMPO), a common radical trap. Instead of radical recombination, the reaction proceeds through a redox pathway involving oxidation of the borole radical anion combined with reduction of TEMPO. This electron‐transfer process is accompanied by a deprotonation reaction of the cobaltocenium counterion by the base TEMPO? to give TEMPO‐H and a neutral cobalt(I) fulvene complex ( 7 ). The latter was not observed directly during the reaction, because it instantaneously reacts as a nucleophile attacking at the boron center of the in situ generated borole 3 to give the borate 6 . However, 7 was synthesized independently by deprotonation of [CoCp*2][PF6]. In addition, the obtained zwitterionic cobaltocenium borate 6 undergoes a photolytic rearrangement to form the borata‐alkene derivative 9 that thermally transforms to the chiral cobaltocenium borate 12 . Our investigations are based on spectroscopic evidence, X‐ray crystallography, elemental analysis, as well as DFT calculations.  相似文献   

18.
A one‐pot reaction of the A1/A2‐thiopyridyl pillar[5]arene L with silver(I) trifluoroacetate in the presence of the linear dinitrile guest C8 , [CN(CH2)nCN, n=8], afforded the first example of a two‐dimensional (2D) poly‐pseudo‐rotaxane {[(μ4‐Ag)2( C8 @ L )2(μ ‐C8 )](CF3CO2)2}n. Surprisingly, in this structure the C8 guest not only threads into the pillar[5]arene unit but also crosslinks the 1D coordinative polymeric arrays. The formation of the 2D poly‐pseudo‐rotaxane is driven by an adaptive rearrangement of the components that minimizes the steric clashes not only between the threaded guests but also between the threaded and crosslinked guests where crosslinking occurs. A pathway for the formation of the 2D poly‐pseudo‐rotaxane is proposed.  相似文献   

19.
Bo Li  Xin Li  Xuzhuo Sun  Ning Wang 《中国化学》2016,34(11):1114-1120
Three types of dihalide water clusters [X2(H2O)8]2? (X=Cl, Br) and [I2(H2O)10]2? have been observed in cucurbit[6]uril supramolecular systems with same guest. According to the single crystal data and the quantitative theory computation, with the increase of electronegativity of halide ions, dihalide water clusters become more stable. A further comparison of three kinds of guests with different molecule length but the same anions, [p‐phenylenediamine salt, hexamethylenediamine salt and N,N′‐hexamethylenebis(pyrazinylbromide)], gives the result that the dihalide water clusters collapse from 2D to 1D with the increase of the lengths.  相似文献   

20.
Areneruthenium(II) compounds [Ru(p‐cym)Cl2{κPiPrP(CH2CH2OMe)2}], 3 , and [Ru(arene)Cl2{κP‐RP(CH2CO2Me)2}] 4 – 7 (arene=p‐cym (=1‐methyl‐4‐isopropylbenzene), mes (=1,3,5‐trimethylbenzene); R=iPr, tBu) were prepared from the dimers [Ru(arene)Cl2]2 and the corresponding functionalized phosphine. Treatment of 6 and 7 with 1 equiv. of AgPF6 affords the monocationic complexes [Ru(mes)Cl{κ2P,O‐RP(CH2C(O)OMe)(CH2CO2Me)}]PF6, 10 and 11 , while the related reaction of 5 – 7 with 2 equiv. of AgPF6 produces the dicationic compounds [Ru(p‐cym){κ3P,O,O‐tBuP(CH2C(O)OMe)2}](PF6)2 ( 12 ) and [Ru(mes){κ3P,O,O‐RP(CH2C(O)OMe)2}](PF6)2, 13 and 14 . Partial hydrolysis of one hexafluorophosphate anion of 12 – 14 leads to the formation of [Ru(arene){κ2P,O‐RP(CH2C(O)OMe)(CH2CO2Me)}(κO‐O2PF2)]PF6, 15 – 17 , of which 17 (arene=mes; R=tBu) has been characterized by X‐ray crystallography. Compounds 13 and 14 react with 2 equiv. of KOtBu in tBuOH/toluene to give the unsymmetrical complexes [Ru(mes){κ3P,C,O‐RP(CHCO2Me)(CH=C(O)OMe)}], 18 and 19 , containing both a five‐membered phosphinoenolate and a three‐membered phosphinomethanide ring. The molecular structure of compound 18 has been determined by X‐ray structure analysis. The neutral bis(carboxylate)phosphanidoruthenium(II) complexes [Ru(arene){κ3P,O,O‐RP(CH2C(O)O)2}], 20 – 23 are obtained either by hydrolysis of 18 and 19 , or by stepwise treatment of 4 and 5 with KOtBu and basic Al2O3. Novel tripodal chelating systems are generated via insertion reactions of 19 with PhNCO and PhNCS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号