共查询到20条相似文献,搜索用时 15 毫秒
1.
在B3LYP/6-31G(d,p)和TDB3LYP/6-31++G(d,p)//CIS/6-31G(d,p)水平上研究了2-(2-巯苯基)苯并噁唑及其衍生物基态和激发态分子内质子转移现象,并探讨取代基电子效应对分子内质子转移的影响,研究结果表明,在基态时,硫醇式异构体为优势构象,供电子取代基使基态分子内正向质子转移能垒(烯醇式→酮式)升高;而吸电子取代基则可降低能垒,有利于基态分子内质子转移并有助于硫酮式异构体的稳定.在激发态时,硫酮式结构为优势构象,所研究的2-(2-巯苯基)苯并噁唑化合物及衍生物均可以发生无能垒或低能垒(≤1.5kJ/mol)的激发态分子内质子转移.巯苯基部分是激发态失活的主要活性部分,供电子基团有利于激发态的质子转移,吸电子基团使激发态跃迁困难,不利于激发态的质子转移. 相似文献
2.
Excited‐State Proton Transfer and Intramolecular Charge Transfer in 1,3‐Diketone Molecules 下载免费PDF全文
Dr. Marika Savarese Dr. Éric Brémond Prof. Dr. Carlo Adamo Prof. Dr. Nadia Rega Dr. Ilaria Ciofini 《Chemphyschem》2016,17(10):1530-1538
The photophysical signature of the tautomeric species of the asymmetric (N,N‐dimethylanilino)‐1,3‐diketone molecule are investigated using approaches rooted in density functional theory (DFT) and time‐dependent DFT (TD‐DFT). In particular, since this molecule, in the excited state, can undergo proton transfer reactions coupled to intramolecular charge transfer events, the different radiative and nonradiative channels are investigated by making use of different density‐based indexes. The use of these tools, together with the analysis of both singlet and triplet potential energy surfaces, provide new insights into excited‐state reactivity allowing one to rationalize the experimental findings including different behavior of the molecule as a function of solvent polarity. 相似文献
3.
Control over Excited State Intramolecular Proton Transfer and Photoinduced Tautomerization: Influence of the Hydrogen‐Bond Geometry 下载免费PDF全文
Giovanny A. Parada Dr. Todd F. Markle Dr. Starla D. Glover Prof. Dr. Leif Hammarström Dr. Sascha Ott Dr. Burkhard Zietz 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(17):6362-6366
The influence of H‐bond geometry on the dynamics of excited state intramolecular proton transfer (ESIPT) and photoinduced tautomerization in a series of phenol‐quinoline compounds is investigated. Control over the proton donor–acceptor distance (dDA) and dihedral angle between the proton donor–acceptor subunits is achieved by introducing methylene backbone straps of increasing lengths to link the phenol and quinoline. We demonstrate that a long dDA correlates with a higher barrier for ESIPT, while a large dihedral angle opens highly efficient deactivation channels after ESIPT, preventing the formation of the fully relaxed tautomer photoproduct. 相似文献
4.
通过稳态光谱实验和量子化学计算相结合,研究了黄芩素激发态质子转移耦合电荷转移的反应. 实验和计算中S1态吸收峰的缺失表明S1态是暗态. S1暗态导致在实验中观察不到黄芩素在乙醇溶液中的荧光峰,且固体的荧光峰很弱. 黄芩素分子的前线分子轨道和电荷差异密度表明S1态是电荷转移态,然而S2态是局域激发态. 计算的黄芩素分子的势能曲线在激发态只有一个稳定点,这表明了黄芩素激发态分子内质子转移的过程是一个无能垒的过程. 相似文献
5.
This paper presented comprehensive theoretical investigation of excited state intramolecular proton transfer (ESIPT) of four new large Schiff base derivatives with extended conjugated chromophores. The properties of the ground state and the excited state of phototautomers of C1 to C4 [ C1 : 2‐(4′‐nitro‐stilbene‐4‐ylimino)methylphenol; C2 : 2‐(4′‐cyano‐stilbene‐4‐ylimino)methylphenol; C3 : 2‐(4′‐methoxyl‐stilbene‐4‐ylimino)methylphenol; C4 : 2‐(4′‐N,N‐diethylamino‐stilbene‐4‐ylimino)methylphenol], which included geometrical parameter, energy, rate constant, frontier orbit, Mulliken charge, dipole moment change, were studied by DFT (density functional theory), CIS (configuration interaction singles‐excitation), TDDFT (time‐dependent DFT) methods to analyze the effects of chromophore part on the occurrence of ESIPT and the role of substituent groups. The structural parameter calculation showed that the shorter RH? N and larger RO? H from enol to enol* form, and less twisted configuration in the excited state implied that these molecules could undergo ESIPT as excitation. Stable transition states and a low energy barrier were observed for C1 to C4 . This suggested that chromophore part increased some difficulty to undergo ESIPT for these molecules, while the possibility of occurrence of ESIPT was quite high. The negative ΔE* (?9.808 and ?9.163 kJ/mol) of C1 and C2 and positive ΔE* (0.599 and 1.029 kJ/mol) of C3 and C4 indicated that withdrawing substituent groups were favorable for the occurrence of ESIPT. The reaction rate constants of proton transfer of these compounds were calculated in the S0 and S1 states respectively, and the high rate constants of these compounds were observed at S1 state. C1 even reached at 1.45×1015 s?1 in the excited state, which is much closed to 2.05×1015 s?1 of the parent moiety (salicylidene methylamine). Electron‐donating and electron‐withdrawing substituent groups had different effects on the electron density distribution of frontier orbits and Mulliken charges of the atoms, resulting in different dipole moment changes in enol*→keto* process. These differences in turn suggested that C1 and C2 had more ability to undergo ESIPT than C3 and C4 . The ultraviolet/visible absorption spectra, normal fluorescence emission spectra and ESIPT fluorescence emission spectra of these compounds were predicted in theory. 相似文献
6.
Pinggui Yi Hongliang Peng Zhaoxu Wang Xianyong Yu Xiaofang Li Yonghong Liang 《中国化学》2011,29(4):650-654
The ground‐ and excited‐state intramolecular proton transfer processes of 2‐(2‐R (R?OH, NH2, SH) phenyl (or pyridyl)) benzoxazoles (or benzothiazoles) are investigated by the DFT methods. The calculated results indicate that in the ground state there is a high correlation (R=0.9950) between the proton transfer barrier and the intramolecular hydrogen bonds (IMHB) strength. The increase of the strength of IMHB in the proton transfer processes leads to a larger barrier contributions. Intramolecular proton transfer process pathway is along with the minimal difference of change value in the IMHB angle. In the excited‐state, there is a similar relationship between the IMHB and the barrier. 相似文献
7.
The excited state intramolecular proton transfer (ESIPT) processes in 3‐methylsalicyclic acid (3‐MeSA) and 3‐methoxysalicyclic acid (3‐MeOSA) have been investigated in cyclohexane medium by emission spectroscopic techniques. The ESIPT process was characterized in 3‐MeSA from the large Stokes fluorescent band (455 nm), but it was suppressed by 3‐MeOSA in cyclohexane. The ESIPT process was found to be accelerated both in 3‐MeSA and 3‐MeOSA in the presence of a hydrogen bond accepting agent, triethylamine (TEA). Further, theoretical calculations were carried out at the ground and excited states to complement the experimental evidences. 相似文献
8.
本文简述了激发态分子内质子转移(ESIPT)化合物的理论研究进展,并对其作为荧光化学传感器的应用作了简要的综述,列举了一些代表性的工作,以期对该类化合物的后续研究工作有所帮助. 相似文献
9.
Low‐Threshold Wavelength‐Switchable Organic Nanowire Lasers Based on Excited‐State Intramolecular Proton Transfer 下载免费PDF全文
Wei Zhang Dr. Yongli Yan Dr. Jianmin Gu Prof. Jiannian Yao Prof. Yong Sheng Zhao 《Angewandte Chemie (International ed. in English)》2015,54(24):7125-7129
Coherent light signals generated at the nanoscale are crucial to the realization of photonic integrated circuits. Self‐assembled nanowires from organic dyes can provide both a gain medium and an effective resonant cavity, which have been utilized for fulfilling miniaturized lasers. Excited‐state intramolecular proton transfer (ESIPT), a classical molecular photoisomerization process, can be used to build a typical four‐level system, which is more favorable for population inversion. Low‐power driven lasing in proton‐transfer molecular nanowires with an optimized ESIPT energy‐level process has been achieved. With high gain and low loss from the ESIPT, the wires can be applied as effective FP‐type resonators, which generated single‐mode lasing with a very low threshold. The lasing wavelength can be reversibly switched based on a conformation conversion of the excited keto form in the ESIPT process. 相似文献
10.
Dr. Julien Massue Denis Frath Pascal Retailleau Dr. Gilles Ulrich Dr. Raymond Ziessel 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(17):5375-5386
A series of thirteen luminescent tetrahedral borate complexes based on the 2‐(2′‐hydroxyphenyl)benzoxazole (HBO) core is presented. Their synthesis includes the incorporation of an ethynyl fragment by Sonogashira cross‐coupling reaction, with the goal of extending the conjugation and consequently redshifting their emission wavelength. Different regioisomers, substituted in the 3‐, 4‐, or 5‐position of the phenolate side of the HBO core, were studied in order to compare their photophysical properties. The complexes were characterized by X‐ray diffraction and NMR, UV/Vis, and emission spectroscopy in solution and in the solid state. In all cases, complexation to boron leads to a donor–acceptor character that impacts their photophysical properties. Complexes with a 3‐ or 5‐substituted fragment display mild to pronounced internal charge transfer (ICT), a feature strengthened by the presence of p‐dibutylaminophenylacetylene in the molecular structure, protonation of the nitrogen atom of which leads to a significant blueshift and an increase in quantum yield. On the contrary, when the ethynyl module is grafted on the 4‐position, narrow, structured, symmetrical absorption/emission bands are observed. Moreover, the fact that protonation has little effect on the emission maximum wavelength reveals singlet excited‐state decay. Solid‐state emission properties reveal a redshift compared to solution, explained by tight packing of the π‐conjugated systems and the high planarity of the dyes. Subsequent connection of these complexes to other photoactive subunits (BODIPY, Boranil) provides dyads in which efficient cascade energy transfer is observed. 相似文献
11.
Highly Selective “Turn‐On” Fluorescent and Colorimetric Sensing of Fluoride Ion Using 2‐(2‐Hydroxyphenyl)‐2,3‐dihydroquinolin‐4(1 H)‐one based on Excited‐State Proton Transfer 下载免费PDF全文
A simple, highly selective and sensitive colorimetric system for the detection of fluoride ion in an aqueous medium has been developed using 2‐(2‐hydroxyphenyl)‐2,3‐dihydroquinolin‐4(1 H)‐one. This system allows selective “turn‐on” fluorescence detection of fluoride ion, which is found to be dependent upon guest basicity. An excited‐state proton transfer is proposed to be the signaling mechanism, which is rationalized by DFT and TD‐DFT calculations. The present sensor can also be applied to detect fluoride levels in real water samples. 相似文献
12.
White Emitters by Tuning the Excited‐State Intramolecular Proton‐Transfer Fluorescence Emission in 2‐(2′‐Hydroxybenzofuran)benzoxazole Dyes 下载免费PDF全文
Karima Benelhadj Wenziz Muzuzu Dr. Julien Massue Dr. Pascal Retailleau Dr. Azzam Charaf‐Eddin Dr. Adèle D. Laurent Prof. Denis Jacquemin Dr. Gilles Ulrich Dr. Raymond Ziessel 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(40):12843-12857
The synthesis, structural, and photophysical properties of a new series of original dyes based on 2‐(2′‐hydroxybenzofuran)benzoxazole (HBBO) is reported. Upon photoexcitation, these dyes exhibit intense dual fluorescence with contribution from the enol (E*) and the keto (K*) emission, with K* being formed through excited‐state intramolecular proton transfer (ESIPT). We show that the ratio of emission intensity E*/K* can be fine‐tuned by judiciously decorating the molecular core with electron‐donating or ‐attracting substituents. Push–pull dyes 9 and 10 functionalized by a strong donor (nNBu2) and a strong acceptor group (CF3 and CN, respectively) exhibit intense dual emission, particularly in apolar solvents such as cyclohexane in which the maximum wavelength of the two bands is the more strongly separated. Moreover, all dyes exhibit strong solid‐state dual emission in a KBr matrix and polymer films with enhanced quantum yields reaching up to 54 %. A wise selection of substituents led to white emission both in solution and in the solid state. Finally, these experimental results were analyzed by time‐dependent density functional theory (TD‐DFT) calculations, which confirm that, on the one hand, only E* and K* emission are present (no rotamer) and, on the other hand, the relative free energies of the two tautomers in the excited state guide the ratio of the E*/K* emission intensities. 相似文献
13.
In this paper, we described the synthesis and characterization of new diphenylethylene bearing imino group. We concentrated particularly on the investigation of the possibility of the excited state intramolecular charge transfer (ESIPT) of the new dyes experimentally and theoretically. The absorption and fluorescence spectroscopy of the dyes were determined in various solvents. The results showed that the maximal absorption wavelength of 2‐[(4′‐N,N‐dimethylamino‐diphenylethylene‐4‐ylimino)methyl]phenol ( C1 ) and 4‐[(4′‐N,N‐dimethylamino‐diphenylethylene‐4‐ylimino)methyl]phenol ( C2 ) exhibited almost independence on the solvent polarity. While as contrast, the maximal fluorescence wavelength of the dyes showed somewhat dependence on the solvent polarity. In particular, C1 displayed well‐separated dual fluorescence spectroscopy. The second fluorescence peak was characterized with an "abnormal" fluorescence emission wavelength in aprotic solvents with large Stokes shift (ca. 140 nm in THF), which was much more than normal Stokes shift (ca. 30 nm in THF). This emission spectroscopy could be assigned to ESIPT emission. On the other hand, the ESIPT fluorescence of C1 was much reduced or lost in the protic solvents. While, only normal fluorescence emission was detected in various solvents. Although the absorption maxima of C1 exhibited about 10 nm red‐shift with respect to those of C2 , the normal fluorescence maxima of C1 and C2 were almost identical in various solvents. These results suggested that C1 could undergo ESIPT, but C2 was not able to proceed ESIPT. The molecular geometry optimization of phototautomers in the ground electronic state (S0) was carried out with HF method (Hartree‐Fock) and at DFT level (Density Functional Theory) using B3LYP both, while the CIS was employed to optimize the geometries of the first singlet excited state (S1) of the phototautomers of C1 and C2 respectively. The properties of the ground state and the excited state of the phototautomers of C1 and C2 , including the geometrical parameter, the energy, the frontier orbits, the Mulliken charge and the dipole moment change were performed and compared completely. The data were analyzed further based on our experimental results. Furthermore, the absorption and fluorescence spectra were calculated in theory and compared with the measured ones. The rate constant of internal proton transfer (9.831×1011 s?1) of C1 was much lower than that of salicylidene methylamine ( C3 , 2.045×1015 s?1), which was a typical Schiff base compound and was well demonstrated to undergo ESIPT easily under photoexcitation. 相似文献
14.
从电子结构控制理论出发,通过在酚羟基对位引入吸电子取代基团稳定水杨醛中激发态的酮式构象,制备了目标化合物5-对氰基苯基-水杨醛(CN-SA).光谱测试结果显示,CN-SA表现出典型的ESIPT态荧光分子特性,而且辐射跃迁过程的酮式分配比例显著提高,荧光强度和颜色变化明显.CN-SA的荧光光谱不但能够对外围溶剂环境进行选择性识别,而且对溶解和聚集过程(聚集效应)及外围氢键形成能力的变化(pH效应和阴离子效应)等具有特异性响应,其变化可以定量表达.CN-SA仅通过结构微调即实现醇-酮构象的显著变化,可作为一个简单的多重刺激响应型荧光探针. 相似文献
15.
含不同质子供体的2-苯基苯并三唑衍生物激发态质子转移的理论研究 总被引:1,自引:0,他引:1
用密度泛函理论(DFT)和二级微扰理论(MP2)研究了带不同质子供体的2-苯基苯并三唑衍生物: 2-(2-羟苯基)苯并三唑(H-TIN), 2-(2-氨苯基)苯并三唑(APyBT)和2-(2-巯苯基)苯并三唑(MPyBT)的激发态分子内质子转移(ESIPT)性质以及它们作为紫外光吸收剂的光物理机制. 结果表明, 在基态时三个化合物的最稳定异构体是均存在分子内氢键的正常构型N, 而互变异构体T和其扭曲构型Ttwisted都是不稳定的. 激发态势能曲线表明H-TIN和APyBT的ESIPT分别需要克服约7.06和20.7 kJ/mol的能垒, 而MPyBT的ESIPT无需能垒|同时结合分子轨道, 电荷差分密度三维立体图的分析结果表明三个化合物都能发生ESIPT, 并且伴随有扭曲分子内电荷转移, 这些原因均表明它们都具有好的紫外光稳定作用. 相似文献
16.
Acid‐Induced Shift of Intramolecular Hydrogen Bonding Responsible for Excited‐State Intramolecular Proton Transfer 下载免费PDF全文
The significant progress recently achieved in designing smart acid‐responsive materials based on intramolecular charge transfer inspired us to utilize excited‐state intramolecular proton transfer (ESIPT) for developing a turn‐on acid‐responsive fluorescent system with an exceedingly large Stokes shift. Two ESIPT‐active fluorophores, 2‐(2‐hydroxyphenyl)pyridine (HPP) and 2‐(2‐hydroxyphenyl)benzothiazole (HBT), were fused into a novel dye (HBT‐HPP) fluorescent only in the protonated state. Moreover, we also synthesized three structurally relevant control compounds to compare their steady‐state fluorescence spectra and optimized geometric structures in neutral and acidic media. The results suggest that the fluorescence turn‐on was caused by the acid‐induced shift of the ESIPT‐responsible intramolecular hydrogen bond from the HPP to HBT moiety. This work presents a systematic comparison of the emission efficiencies and basicity of HBT and HPP for the first time, thereby utilizing their differences to construct an acid‐responsive smart organic fluorescent material. As a practical application, red fluorescent letters can be written using the acid as an ink on polymer film. 相似文献
17.
Excited‐State Intramolecular Proton Transfer: Photoswitching in Salicylidene Methylamine Derivatives 下载免费PDF全文
Joanna Jankowska Dr. Michał F. Rode Prof. Joanna Sadlej Prof. Andrzej L. Sobolewski 《Chemphyschem》2014,15(8):1643-1652
The effect of chemical substitutions on the photophysical properties of the salicylidene methylamine molecule (SMA) (J. Jankowska, M. F. Rode, J. Sadlej, A. L. Sobolewski, ChemPhysChem, 2012 , 13, 4287–4294) is studied with the aid of ab initio electronic structure methods. It is shown that combining π‐electron‐donating and π‐electron‐withdrawing substituents results in an electron‐density push‐and‐pull effect on the energetic landscape of the ground and the lowest excited ππ* and nπ* singlet states of the system. The presented search for the most appropriate SMA derivatives with respect to their photoswitching functionality offers an efficient prescreening tool for finding chemical structures before real synthetic realization. 相似文献
18.
Mhejabeen Shaikh Sharmistha Dutta Choudhury Dr. Jyotirmayee Mohanty Dr. Achikanath C. Bhasikuttan Dr. Werner M. Nau Prof. Haridas Pal Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2009,15(45):12362-12370
The effect of the macrocyclic host, cucurbit[7]uril (CB7), on the photophysical properties of the 2‐(2′‐hydroxyphenyl)benzimidazole (HPBI) dye have been investigated in aqueous solution by using ground‐state absorption and steady‐state and time‐resolved fluorescence measurements. All three prototropic forms of the dye (cationic, neutral, and anionic) form inclusion complexes with CB7, with the largest binding constant found for the cationic form (K≈2.4×106 M ?1). At pH≈4, the appearance of a blue emission band upon excitation of the HPBI cation in the presence of CB7 indicates that encapsulation into the CB7 cavity retards the deprotonation process of the excited cation, and hence reduces its subsequent conversion to the keto form. Excitation of the neutral form (pH≈8.5), however, leads to an increase in the keto form fluorescence, indicating an enhanced excited‐state intramolecular proton‐transfer process for the encapsulated dye. In both the ground and excited states, the two pKa values of the HPBI dye show upward shifts in the presence of CB7. The prototropic equilibrium of the CB7‐complexed dye is represented by a six‐state model, and the pH‐dependent changes in the binding constants have been analyzed accordingly. It has been observed that the calculated pKa values using this six‐state model match well with the values obtained experimentally. The changes in the pKa values in the presence of CB7 have been corroborated with the modulation of the proton‐transfer process of the dye within the host cavity. 相似文献
19.
2-(2-巯苯基)苯并噁唑分子内质子转移的理论研究 总被引:2,自引:0,他引:2
在B3LYP/6-31G(d,p)水平上研究了2-(2-巯苯基)苯并噁唑气态中五种异构体(E1, E2, E3, E4和K)在气态中的稳定性及其在基态下的质子转移, 同时结合极化连续介质模型(PCM)研究了水、二甲亚砜、乙腈、乙醇、苯胺和环己烷等对2-(2-巯苯基)苯并噁唑溶剂化作用的影响. 研究结果表明, 醇式异构体E1为2-(2-巯苯基)苯并噁唑的优势构型; 在E1向K(酮式异构体)转变过程中, 存在一个较小的能垒; 当考虑零点振动能(ZPVE)后, 逆向能垒消失. 在溶液中, 随着溶剂极性的增强, 醇式异构体E1与K之间的反应平衡向K方向移动, 在非极性溶剂环己烷中, E1为优势构型, 而在强极性水溶液中, K为优势构型. 相似文献
20.
Local Control Theory in Trajectory Surface Hopping Dynamics Applied to the Excited‐State Proton Transfer of 4‐Hydroxyacridine 下载免费PDF全文
Dr. Basile F. E. Curchod Dr. Thomas J. Penfold Prof. Dr. Ursula Rothlisberger Dr. Ivano Tavernelli 《Chemphyschem》2015,16(10):2127-2133
The application of local control theory combined with nonadiabatic ab initio molecular dynamics to study the photoinduced intramolecular proton transfer reaction in 4‐hydroxyacridine was investigated. All calculations were performed within the framework of linear‐response time‐dependent density functional theory. The computed pulses revealed important information about the underlying excited‐state nuclear dynamics highlighting the involvement of collective vibrational modes that would normally be neglected in a study performed on model systems constrained to a subset of the full configuration space. This study emphasizes the strengths of local control theory for the design of pulses that can trigger chemical reactions associated with the population of a given molecular excited state. In addition, analysis of the generated pulses can help to shed new light on the photophysics and photochemistry of complex molecular systems. 相似文献