首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Results from direct numerical simulations of laminar bubbly flow in a vertical channel are compared with predictions of a two-fluid model for steady-state flow. The simulations are done assuming a two-dimensional system and the model coefficients are adjusted slightly to match the data for upflow. The model is then tested by comparisons with different values of flow rate and gravity, as well as downflow. In all cases the results agree reasonably well, even though the simulated void fraction is considerably higher than what is assumed in the derivation of the model. The results do, however, suggest a need to understand the lift and the wall repulsion force on bubbles better, particularly in dense flows.  相似文献   

4.
5.
6.
In this study a model which was developed previously is used to theoretically investigate the steady flow of a particulate suspension into two-dimensional horizontal and inclined channels. The continuity equation for the fluid and the simplified two-dimensional Navier-Stokes equations are then solved together with a particle concentration equation. This latter equation is formulated by considering the balance between the particle flux due to gravity with the corresponding particle fluxes due to convection and shear-induced diffusion. The resulting coupled system of equations is solved numerically using a specialised finite-difference method. It is found, for the parameter range for flows of proppants in hydraulic fractures, that when the suspension enters the channel with a uniform velocity profile it almost instantaneously becomes parabolic. In addition, the effects of particle sedimentation are most dominant in the entrance region, but further downstream such effects are balanced as shear-induced particle diffusion becomes more important. It is also shown that the suspension flow depends critically on the choice of the parameters used, e.g. the ratio of the particle radius to the height of the channel.  相似文献   

7.
A continuum theory for the distribution of incompressible particles in an incompressible fluid is employed to study the behaviour of plane shock waves in a particulate suspension. An expression is derived for the speed of displacement in terms of the jump in the volume fraction of one of the constituents across the shock. A differential equation is derived to govern the evolutionary behaviour of the shock wave propagating into a region which is in a uniform equilibrium state before the arrival of the shock wave. The implications of this equation are examined in detail.  相似文献   

8.
The response of a facility, consisting of a valveless reciprocating pump, a large settling chamber and a long straight smooth pipe, to a periodic change in the volume was analysed. The impedance of the pipe was estimated in both laminar and turbulent flow regimes under otherwise identical flow conditions. A good agreement with theory was obtained for the laminar flow. The estimate of the pipe impedance from the experimental data in turbulent flow was based on the momentum equation as well as on the measured resonant frequency of the system. These independent methods show that the inertance of the pipe has a qualitatively different behavior in laminar and turbulent flow regimes.  相似文献   

9.
10.
In[1]Zhou extended some Liapounoff‘s theorems of the theory of stability in the case of plane laminar fluid flows.In[2]Zhou and Li investigated the eigenvalue problem and expansion theorems associated with Orr-Sommerfeld equation,and obtained some new results.In this paper,based on the results of[1]and[2]we shall prove:(1)For the linearized problem the definition of stability according to the eigenvalues of Orr-Sommerfeld equation and that according to the perturbation.energy are equivalent;(2)The method of linearization is admissible for the stability pro-blem of plane laminar fluid flows for sufficiently small initial disturbance.  相似文献   

11.
An exegesis of a novel mechanism leading to vortex splitting and subsequent shedding that is valid for two-dimensional incompressible, inviscid or viscous, and external or internal or wall-bounded flows, is detailed in this research. The mechanism, termed the vortex shedding mechanism (VSM) is simple and intuitive, requiring only two coincident conditions in the flow: (1) the existence of a location with zero momentum and (2) the presence of a net force having a positive divergence. Numerical solutions of several model problems illustrate causality of the VSM. Moreover, the VSM criteria is proved to be a necessary and sufficient condition for a vortex splitting event in any two-dimensional, incompressible flow. The VSM is shown to exist in several canonical problems including the external flow past a circular cylinder. Suppression of the von Kármán vortex street is demonstrated for Reynolds numbers of 100 and 400 by mitigating the VSM.  相似文献   

12.
This paper presents an approximate method for determining separation points in laminar flows. The method of solution of the boundary layer equations uses two integrated equations: the main characteristic of the method is that its approximations (based on a representation of the velocity profiles by means of the Taylor formula) are only in integrals. The first-order approximation gives the solution in closed form and is accurate for accelerated flows and for decelerated flows when the non-dimensional axial derivative of the pressurep x is less than 0.5: for stronger adverse pressure gradients accurate results are obtained by means of the third approximation.The same method was applied successfully to the energy equation.
Sommario Questo lavoro presenta un metodo approssimato per determinare i punti di separazione in flussi laminari. Il metodo di soluzione delle equazioni dello strato limite utilizza le derivate dell'equazione della quantita' di moto e due equazioni integrate: la caratteristica fondamentale del metodo risiede nell'approssimare (mediante una rappresentazione dei profili di velocita' basata sulla formula di Taylor) solo integrali. La prima approssimazione da' la soluzione in forma chiusa ed e' accurata per flussi accelerati e per flussi decelerati quando la derivata della pressione assiale in forma adimensionalep x e' minore di 0.5: per gradienti di pressione piu' sfavorevoli risultati accurati si hanno con la terza approssimazione. Lo stesso metodo e' stato applicato con successo all'equazione dell'energia.
  相似文献   

13.
A two dimensional model of a steady flow of a suspension in an inclined channel is developed and studied with the aid of an integral method. The model explains the existence of two operational modes in such a channel, predicted earlier by Probstein et al. (1977).  相似文献   

14.
Numerical solution of the complete system of Navier-Stokes equations is used to investigate laminar (Re ? 1000) subsonic flows of a compressible gas in the presence of heat transfer (cooled walls) in two-dimensional channels containing a bend section (for different curvature parameters). The appearance of closed separation regions of the flow on the channel walls, their deformation as the parameters of the problem are changed, and the loss of pressure are studied. The sections of the channel walls with maximal and minimal heat fluxes are determined, and the connection between these sections and the separation regions is elucidated.  相似文献   

15.
A finite element solution of the Navier-Stokes equations for steady flow under the magnetic effect through a double-branched two-dimensional section of a three-dimensional model of the canine aorta is discussed. The numerical scheme involves transforming the physical co-ordinates to a curvilinear boundary-fitted co-ordinate system. The shear stress at the wall is calculated for a Reynolds number of 1000 with the branch-to-main aortic flow rate ratio as a parameter. The results are compared with earlier works involving experimental data and found to be in reasonable qualitative agreement. The steady flow, shear stress and branch flow under the effect of a magnetic field have been discussed in detail.  相似文献   

16.
Geometrical arguments lead to the definition of two education criteria for coherent structures in two-dimensional incompressible turbulent flows. These criteria involve the pressure or the vorticity field and are compared.  相似文献   

17.
Measurements are reported for the average local particulate velocity and concentration distributions in the wake of a cylinder immersed in a stream containing a polydisperse aerosol. The wake centerline defects and transverse distributions were determined for both parameters. It was found that the particulate centerline defect persists a considerable distance downstream of the cylinder before fully developed conditions are satisfied. Transverse particulates and gaseous velocity distributions assume a Gaussian profile at the same point downstream. The charge-to-mass ratio throughout the wake region was equal to the free stream value for all experimental conditions and was of such a magnitude to permit the electrostatic effects to be neglected in the governing equations. Gaseous and particulate transport properties were identified in the wake.  相似文献   

18.
19.
The boundary layer motion of a weak suspension is investigated with allowance for the effect on the particles not only of the Stokes force but also of the additional transverse force resulting from the transverse nonuniformity of the flow over the individual particle. As distinct from studies [1–3], in which the limiting values of the transverse force (Saffman force) were used [4], the velocity and density of the dispersed phase have been determined with allowance for the dependence of the Saffman force on the ratio of the Reynolds numbers calculated from the velocity of the flow over the individual particle and the transverse velocity gradient of the undisturbed flow, respectively [5, 6].Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 66–73, January–February, 1992.In conclusion the authors wishes to thank M. N. Kogan, N. K. Makashev, and A. Yu. Boris for useful discussions of the results.  相似文献   

20.
A similarity solution for a steady laminar mixed convection boundary layer flow of a nanofluid near the stagnation point on a vertical permeable plate with a magnetic field and a buoyancy force is obtained by solving a system of nonlinear ordinary differential equations. These equations are solved analytically by using a new kind of a powerful analytic technique for nonlinear problems, namely, the homotopy analysis method (HAM). Three different types of nanoparticles, namely, copper (Cu), alumina (Al2O3), and titanium oxide (TiO2), with water as the base fluid are considered. The influence of the volume fraction of nanoparticles, permeability parameter, magnetic parameter, and mixed convection parameter on the surface shear stress and surface heat transfer, as well as on the velocity and temperature profiles, is considered. It is observed that the skin friction coefficient and the local Nusselt number increase with the nanoparticle volume fraction for all types of nanoparticles considered in this study. The greatest values of the skin friction coefficient and the local Nusselt number are obtained for Cu nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号