首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X-ray studies indicate that indanone-1 crystals belong to a monoclinic system, space group P21/c (C52h), with the following parameters: a = 7.90±0.01 Å; b = 12.38±0.01 Å; c = 7.39±0.01 Å; β = 99°±30' and Z = 4. A vibrational assignment of fundamental bands observed in the polarized infrared spectrum between 4000 cm−1 and 250 cm−1 is proposed. The band fine structure analysis at 77 °K shows a doublet structure, which agrees with X-ray data.  相似文献   

2.
Infrared and Raman spectra of the polycrystalline complex cyanide acids H3MIII(CN)6 (M=Fe,Co) and their deutero analogues were investigated at 300 and 90K in the region 4000-100 cm−1. The spectra indicate clearly that the site symmetry of the M(CN)63− ion is C3v for M=Fe and D3d for M=Co. These conclusions are consistent with an asymmetric N-H·N bond in H3Fe(CN)6 and with a symmetric one in H3Co(CN)6. The N-H stretching frequencies are assigned as ca. 1100 cm−1 (Fe) and as 560 cm−1 (Co), the shift being related to the difference in the hydrogen bonding strength, 2.665 Å (Fe) and 2.582 Å (Co). The spectroscopic behaviour of these very short N-H·N bonds appears to be similar to that of the strong O-H·O bonds in type A (for M=Co) or type pseudo-A compounds (for M=Fe).  相似文献   

3.
The synthesis of cis-1,2,3-trichlorocyclopropane is reported. The infrared spectra have been recorded between 4000 and 400 cm−1 in the polycrystalline solid phase, and between 4000 and 200 cm−1 in the gas phase. The spectrum of a solution in carbon disulphide was measured from 1400 to 400 cm−1. The Raman spectrum has been obtained between 4000 and 100 cm−1 in the solid phase. An assignment of the fundamentals of the title compound is proposed and compared with similar molecules. The spectrum unequivocally proves the CJV structure of the molecule.  相似文献   

4.
The infrared and Raman spectra of glyoxylic acid in the gas phase, in solution and in the solid state have been obtained in the region from 4000 to 300 cm−1. p]Band structure analysis in the gaseous state shows that the configuration of formyl-carbonic acid is trans and planar. It was established that in solution some bands belong to dioxyacetic acid. p]A vibrational assignment is proposed based on a priori calculation of the spectra, using a Urey-Bradley force field intermediate between those of glyoxal and oxalic acid.  相似文献   

5.
The infrared spectra of solid samples of C4H7K and C4D7K have been investigated in the 4000 to 30 cm−1 range. A complete assignment of intramolecular fundamentals of C4H7 and C4D7 ions and of potassium-allyl vibrations is proposed and the intramolecular force constants are calculated. The C(CH2)32− anion has been identified spectroscopically. Structures of C3H5, C4H7 and C(CH3)32− are discussed and compared with those optimised by the MINDO/3 method.  相似文献   

6.
The gas-phase infrared absorption spectrum of acrolein is observed from 4000 to 400 cm−1 with a resolution of 0.06 or 0.03 cm−1. The previously unlocated vinyl CH stretching band is observed at 3069 cm−1 and its CH out-of-plane modes whose assignments have been in confusion are investigated in detail. The mode assignments of some other bands are revised on the basis of the calculated frequencies and relative intensities by an ab initio MO method.  相似文献   

7.
Quantitative IR solution data in carbon tetrachloride and chloroform are recorded for the CO and OH regions of 31 chromones. In the 1580–1700 cm−1 region, 5-hydroxychromones show three main maxima, the two of highest frequency, at 1663 ± 3 cm−1 and 1630 ± 5 cm−1 in CCl4 (1661 ± 2 cm−1 and 1627 ± 5 cm−1 in CHCl3), being sufficiently intense as to possess high CO character. Typically, 5-alkoxychromones exhibit two intense maxima in this region, 1663 ± 3 cm−1 and 1613 ± 7 cm−1 in CCl4 (1657 ± 2 cm−1 and 1608 ± 12 cm−1 in CHCl3). Diagnostically useful changes in contour and principal peak positions can be seen for substituted and annellated 5-hydroxychromones. In the 2500–3650 cm−1 region, the stretching frequencies of OH groups at the most commonly encountered positions (C-5, C-7, and 2-CH2OH) in natural chromones, are identified.  相似文献   

8.
The infrared spectra of some aldehyde-BF3 complexes were measured from 2.5 μ to 19 μ. The intensity and force constant of the v(CH)ald range is dependent on the lone-pair electrons of the neighbouring oxygen atom. In the BF3 complexes the intensity of v(CH)ald is decreased and shifted 150 cm−1 towards higher frequencies, while the band becomes simple. The addition of BF3 is verified by checking the v(C=O) band, which is shifted 70 cm−1 towards lower frequencies.  相似文献   

9.
For perfluorocyclohexane derivatives in which not more than one fluorine at each carbon atom is replaced by a hydrogen atom, it is established that C---H groups with an axial hydrogen show infra-red absorption at 2980 cm−1 and with equatorial hydrogen at 2974 cm−1. With 1H/2H-, 1H:2H/- and 1H:3H/-decafluorocyclohexane the frequencies are reduced somewhat. When the C---H groups are adjacent to a double bond the absorption is at 2961 cm−1, while olefinic C---H groups absorb near 3095 cm−1 in the fluorocarbon series. The C---H absorption is at 3102 cm−1 in pentafluorobenzene.  相似文献   

10.
Infrared and Raman spectra of polycrystalline LiHC2O4, LiHC2O4, · H2O and their D and 6Li containing isotopic derivatives have been investigated at 300 and 90 K in the 4000–50 cm−1 region. All the internal and external optically active modes of lithium hydrogen oxalate monohydrate have been identified and an assignment is given. The spectroscopic data are consistent with X-ray data showing an asymmetric short hydrogen bond with a positive deuterium isotope effect. The dehydration of LiHC2O4, · H2O changes the type of hydrogen bond which becomes symmetric of the double minimum type. The deuteration of LiHC2O4, on the other hand. weakens the hydrogen bond and makes it asymmetric again. The asymmetry appears more pronounced at low temperature.  相似文献   

11.
The Raman spectra of F3PBH3 and F3PBD3 have been recorded (2500-10 cm−1) of the liquids (−80°C) and solids (−196°C) as well as the infrared spectra (4000-33 cm−1) of the solids. In the spectrum of the solid state many of the 10B and 11B fundamentals were clearly defined and it was also possible to assign the BH3 torsional frequency from the infrared and Raman spectra of the solids. A complete vibrational assignment is proposed and a normal coordinate calculation carried out. The force constant of 2.46 mdyn Å−1 for the P-B stretching mode is consistent with the short P-B bond; this constant is compared to the similar quantity for several other phosphorus-boron compounds. All of the E modes for the “free” molecule are shown to be split by the site symmetry which indicates that the molecules occupy Cs or C1 sites. The large number of observed lattice modes is consistent with two or more molecules per primitive cell. The torsional frequency was observed at 224 cm−1 and 167 cm−1 in hydrogen and deuterium compounds in the solid, respectively. These frequencies gave a periodic barrier of 4.15 kcal mole−1 for F3PBH3 and 4.31 kcal mole−1 for F3PBD3. CNDO/2 calculations have been carried out for F3PBH3 and the isoelectronic F3SiCH3 molecule in both the staggered and eclipsed forms and the dipole and barrier origins are discussed.  相似文献   

12.
Infra-red spectroscopic study of lignins   总被引:9,自引:0,他引:9  
Infra-red spectra from 200–4000cm−1 of lignin precipitated from black liquor produced from different pulping processes of bagasse, e.g. soda, kraft, sulfite, peroxyacid and butanol, have been characterized. Peroxyacid lignins are more degraded than other lignins. However, peroxyacid lignin has a higher intensity band at 1720cm−1 than other types of lignins. At the same time, the aromatic ring of lignin produced from peroxyacid pulping of bagasse undergoes severe degradation. Syringyl type of lignin is predominant in all isolated lignins. Peroxyacid and butanol lignins have lower quantities of syringyl lignin shown by the lower ratio of relative absorbance of band intensity at 1500cm−1 to the band at 1600cm−1 than other lignins. Kraft lignin has a broad weak band at about 630cm−1 that is probably due to a C---S bond. A sharp band at 655cm−1, which is due to SO3H, is characteristic of lignosulfonate, which is precipitated from black liquor produced from sulfite pulping process of bagasse. Generally, degradation of different lignins during pulping of bagasse with different processes has the following sequence: peroxyformic > peroxyacetic > butanol-water > butanol-alkali > kraft > sulfite > soda.  相似文献   

13.
Mg+—Ar ion—molecule complexes are produced in a pulsed supersonic nozzle cluster source. The complexes are mass selected and studied with laser photodissociation spectroscopy in a reflectron time-of-flight mass spectrometer system. An electronic transition assigned as X 2Σ+2Π is observed with an origin at 31387 cm−1 (vac) for 24Mg+—Ar. The 24Mg+—Ar spectrum is characterized by a 15 member progression with a frequency (ω′e) of 272 cm−1. An extrapolation of this progression fixes the excited state dissociation energy (Do) at 5552 cm−1. The corresponding ground-state value (Do) is 1270 cm−1 (3.6 kcal/mol). The 2Π , spin—orbit splitting is 76 cm.  相似文献   

14.
The far infrared spectrum from 370 to 50 cm−1 of gaseous 2-bromoethanol, BrCH2CH2OH, was recorded at a resolution of 0.10 cm−1. The fundamental O–H torsion of the more stable gauche (Gg′) conformer, where the capital G refers to internal rotation around the C–C bond and the lower case g to the internal rotation around the C–O bond, was observed as a series of Q-branch transitions beginning at 340 cm−1. The corresponding O–H torsional modes were observed for two of the other high energy conformers, Tg (285 cm−1) and Tt (234 cm−1). The heavy atom asymmetric torsion (rotation around C–C bond) for the Gg′ conformer has been observed at 140 cm−1. Variable temperature (−63 to −100°C) studies of the infrared spectra (4000–400 cm−1) of the sample dissolved in liquid xenon have been recorded. From these data the enthalpy differences have been determined to be 411±40 cm−1 (4.92±0.48 kJ/mol) for the Gg′/Tt and 315±40 cm−1 (3.76±0.48 kJ/mol) for the Gg′/Tg, with the Gg′ conformer the most stable form. Additionally, the infrared spectrum of the gas, and Raman spectrum of the liquid phase are reported. The structural parameters, conformational stabilities, barriers to internal rotation and fundamental frequencies have been obtained from ab initio calculations utilizing different basis sets at the restricted Hartree–Fock or with full electron correlation by the perturbation method to second order. The theoretical results are compared to the experimental results when appropriate. Combining the ab initio calculations with the microwave rotational constants, r0 adjusted parameters have been obtained for the three 2-haloethanols (F, Cl and Br) for the Gg′ conformers.  相似文献   

15.
The convergence of ab initio calculations of the beryllium dimer potential is examined with several basis sets orders of perturbation theory. When the atomic pair natural orbital basis set calculations are extrapolated to the complete basis set and full CI limits, the calculated parameters: Re=2.447 Å, De=827 cm−1, ν01=212.7 cm−1, ν12=167.2 cm−1, ν23=121.5 cm−1 and ν34=77.7 cm−1 are in good agreement with the experimental parameters: Re=2.45 Å, De=839±10 cm−1, ν01=223.2 cm−1, ν12=169.7 cm−1, ν23=122.5 cm−1, and ν34=79 cm−1.  相似文献   

16.
The vibrational overtone spectrum of methylcyclopropene in the region of the 6-0 and 5-0 C---H stretching transitions is reported. Transitions corresponding to the methyl, methylenic and vinyl C---H stretches are assigned. From the Birge-Sponer plots the anharmonicities and mechanical frequencies for the methyl in-plane and out-of-plane C---H stretches are −67.0 and 3118.0 cm−1 and −64.0 and 3071.0 cm−1, respectively. The corresponding values for the methylenic C---H stretches are −60.5 and 3030.7 cm−1. Photolysis at 17093 cm−1 (585 nm) yields two stable products which were identified by gas chromatography. Approximately 60% of the total yield was 2-butyne. A specific rate constant of 1.66×108 s−1 results from the Stern-Volmer analysis of the product yield of 2-butyne.  相似文献   

17.
Infrared spectroscopy measurements on different hemoproteins and models of the active side have been completed for the spectral range from 1800 to 100 cm−1 giving an overview on the contributions expected in the low frequency range. Little is known of the low frequency contribution of proteins in infrared. In order to detect the contributions of heme centers and protein moiety, a systematic study of the infrared spectroscopic properties of the porphyrin ring, the ferric porphyrines with different ligands (hemine and hematine), a heme with 11 amino acids (microperoxidase-11), cytochrome c and cytochrome c oxidase are compared at different pD values and an overview on the relative contributions of hemes, their ligands and the protein site can be provided in the low frequency region. Beside the well know amide I and II modes, the low frequency range is found to be dominated by the amide IV and VI mode around 530/580 cm−1 for cytochrome c and cytochrome c oxidase, as well as further proteins like ferrodoxin. Below 300 cm−1 amide VII modes, doming modes of the heme site and hydrogen-bonding signatures overlap to a broad peak with covering 100–250 cm−1. As clear markers for the iron ligands, bands can be depicted at 388/378 cm−1 (FeN, histidine ligand) and 345 cm−1 FeCl. Furthermore the ring vibration of the protonated histidine is determined at 623 cm−1.  相似文献   

18.
Raman and FTIR spectra for 2,3,4- and 2,3,6-tri-fluoro-benzonitriles have been recorded in the regions 50–4000 cm−1 and 400–4000 cm−1, respectively. Measurement of depolarization ratios for the Raman lines has also been made. Optimized geometrical parameters, charge distributions and vibrational wavenumbers were calculated using ab initio quantum chemical method. Normal coordinate analysis has also been carried out to help assign the fundamentals of these molecules. Each vibration has been assigned using observed wavenumbers in the IR and Raman spectra and their relative intensities, depolarization ratios of the Raman lines, the calculated frequencies, vector displacements and potential energy distributions (PEDs).  相似文献   

19.
IR (4000-30 cm−1) and Raman (4000-0 cm) spectra of [(CD3)3S]I have been observed, together with those of [(CH3)3S]I. By assuming a C3v molecular symmetry for the cations [(CH3)3S]+ and [(CD3)3S]+, all the active fundamentals of [(CD3)3s]+ have been assigned and normal coordinate calculations have been carried out by a symmetry force field for [(CH3)3S]+ and [(CD3)3S]+. The strength of the S---C and C---H bonds in the compound has been compared with that in dimethyl sulfide by using their valence stretching force constants.  相似文献   

20.
Variable temperature (−105 to −150 °C) studies of the infrared spectra (3500–400 cm−1) of 1,1-dimethylhydrazine, (CH3)2NNH2, in liquid krypton have been carried out. No convincing spectral evidence could be found for the trans conformer which is expected to be at least 600 cm−1 less stable than the gauche form. The structural parameters, dipole moments, conformational stability, vibrational frequencies, and infrared and Raman intensities have been predicted from MP2/6-31G(d) ab initio calculations. The predicted infrared and Raman spectra are compared to the experimental ones. The adjusted r0 parameters from MP2/6-311+G(d,p) calculations are compared to those reported from an electron diffraction study. The energy differences between the gauche and trans conformers have been obtained from MP2 ab initio calculations as well as from density functional theory by the B3LYP method calculations from a variety of basis sets. All of these calculations indicate an energy difference of 650–900 cm−1 with the B3LYP calculations predicted the larger values. The potential function governing the conformational interchange has been predicting from both types of calculations and comparisons have been made. The barrier to internal rotation by the independent rotor model of the inner methyl group is predicted to have a value of 1812 cm−1 and that of the outer one of 1662 cm−1 from ab initio MP2/6-31G(d) calculations. These values agree well with the experimentally determined values of 1852±16 and 1558±12 cm−1, respectively, from a fit of the torsional transitions with the coupled rotor model. For the coupled rotor model the predicted V33 (sin 3τ0 sin 3τ1 term) value which ranged from 190 to 232 cm−1 is in reasonable agreement with the experimental value of 268±3 cm−1 but the predicted V33 (cos 3τ0 cos 3τ1 term) value of −73 to −139 cm−1 is 25% smaller and of the opposite sign of the experimental value of 333±22 cm−1. These theoretical and spectroscopy results are compared to similar quantities of some corresponding molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号