首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
After one atmospheric pressure plasma treatment of poly(ethylene terephthalate) (PET) film, acrylic acid (AAc) in aqueous solution was successfully graft‐copolymerized onto PET films. The effects of reaction time, AAc monomer concentration and reaction temperature on grafting behavior of AAc were systematically studied. Possible reaction kinetics of plasma‐induced graft copolymerization, starting from initial hydroperoxide decomposition, were proposed. Through the Arrhenius analysis about graft copolymerization kinetics of AAc monomers on PET surface, it was revealed that the activation energies of decomposition, propagation and termination were 98.4, 63.5, and 17.5 kJ/mol, respectively. The temperature around 80 °C was favorable not only for the formation of oxide radicals through the thermal decomposition of hydroperoxide on PET surface but also for the extension of graft copolymer chain through direct polymer grafting. Poly(acrylic acid) (PAAc) grains grafted onto PET surfaces possessed relatively uniform size and both PAAc grain size and surface roughness increased with increasing the grafting degree of AAc. The increase of grain size with increasing grafting degree results from the possibility of forming long chain graft copolymers and their shielding of reactive sites. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1594–1601, 2008  相似文献   

2.
Bicomponent fibres represent of the new ways for the preparation of synthetic fibres with more variable properties. The polypropylene (PP)‐poly(ethylene terephthalate) (PET) fibre‐forming blend is very interesting because of the improvement of dyeability from bath and some mechanical properties of PP fibres. The new polymer additives containing ester groups which can be added as masterbatches during melting and extrusion processes have been developed in the last years. It has been found that rheological properties of the basic polymer (PP) and polymer additives have a significant role in the blend formation and in spinning. In this work, the influence of some non‐reactive low‐molecular compounds on the processing of fibre‐forming PP‐PET blends and on the properties of blend fibres are presented.  相似文献   

3.
The plasma treatment of polymer surfaces is routinely used to enhance surface properties prior to adhesive bonding or biomolecule interaction. This study investigates the influence of plasma treatment conditions on the surface activation of polyethylene terephthalate (PET) using the SurFx Atomflo? 400L plasma source. In this study the effect of applied plasma power, processing speed, gas composition and plasma applicator nozzle to substrate distance were examined. The level of polymer surface activation was evaluated based on changes to the water contact angle (WCA) of PET samples after plasma treatment. PET surface properties were also monitored using surface energy and X-ray photoelectron spectroscopy (XPS) analysis. The heating effect of the plasma was monitored using thermal imaging and optical emission spectroscopy (OES) techniques. OES was also used as a diagnostic tool to monitor the change in atomic and molecular species intensity with changes in experimental conditions in both time and space. XPS analysis of the PET samples treated at different plasma powers indicated that increased oxygen content on samples surfaces accounted for the decreases observed in WCAs. For the first time a direct correlation was obtained between polymer WCA changes and the OES measurement of the atomic hydrogen Balmer Hα and molecular OH line emission intensities.  相似文献   

4.
Plasma treatment of polymer surfaces is used to control the generation of topological surface structures: stripes, starlike morphologies, and pinnacles in the range from 100 nm up to several micrometers. These protrusions arise when the plasma-treated polymer surface is exposed to an organic solvent (liquid or vapor phase). The distribution density and the height of the observed structures on the surface are functions of the power density of the plasma reactor and the exposure time to the plasma, the duration of the development process, the type of the polymer, and its manufacturing. We suggest that the structures are generated by selective swelling of less cross-linked areas within the polymer surface and not by rearrangement or dissolution of polymer chain fragments created by plasma, or by amphiphilic moieties due to oxidation as a consequence of plasma treatment.  相似文献   

5.
Atmospheric Plasma Sterilization and Deodorization of Dielectric Surfaces   总被引:4,自引:0,他引:4  
A method is presented for rapid and uniform sterilization and deodorization of dielectric surfaces. The technology is applicable to the inside surface of PET or glass bottles, polymer caps, plastic tubes, etc. The treatment is based on a pulsed RF discharge in air at atmospheric pressure (eventually with addition of argon) creating a nonequilibrium plasma on the treated surface. The plasma effectively destroys microorganisms in vegetative or sporulent form. It also slightly etches the polymeric material, removing some atomic layers and, thereby, cleaning it from aromatic organic components (deodorization). The process is short: PET bottles 1.5 L, in particular, can be treated in about 20 msec. The results of surface analysis and microbiological, chromatography, and spectroscopy tests are discussed. A device has been developed and integrated into an industrial-filling machine for online sterilization and deodorization of the inside surface of PET bottles before filling, and for sterilization of caps and bottle necks before seaming. It allows cold asceptic filling at a rate of 36,000 bottles per hour.  相似文献   

6.
A plasma process sequence has been developed to prepare chemical micropatterns on polymeric biomaterial surfaces. These patterns induce a guided localized cell layover at microscopic dimension. Two subsequent plasma steps are applied. In the first functionalization step a microwave ammonia plasma introduces amino groups to obtain areas for very good cell adhesion; the second passivation step combines pattern generation and creation of cell repelling areas. This downstream microwave hydrogen plasma process removes functional groups and changes the linkages of polymer chains at the outermost surfaces. Similar results have been obtained on different polymers including polystyrene (PS), polyhydroxyethylmethacrylate (PHEMA), polyetheretherketone (PEEK), polyethyleneterephthalate (PET) and polyethylenenaphthalate (PEN). Such a rather universal chemical structuring process could widen the availability of biomaterials with specific surface preparations.  相似文献   

7.
Creatore  M.  Favia  P.  Tenuto  G.  Valentini  A.  d'Agostino  R. 《Plasmas and Polymers》2000,5(3-4):201-218
A NH3 plasma process has been studied for enhancing the adhesion of aluminum coatings on polyethyleneterephtalate (PET) films. According to our peel strength results, NH3 plasmas increase markedly the adhesion of aluminum on PET compared to O2 discharges, with a much shorter treatment time. A tentative model of nonhindered growth of Al-coating based on the Lewis basic character of the functionalities grafted by NH3 plasma is proposed for Al-polymer interactions, and for explaining the various steps in the process. The effects of power input and treatment time on the polymer surface chemistry and on the metal-polymer peel strength have been evaluated. Treatment times as short as 0.1 s at 100 W proved to be the best conditions in NH3 plasmas, for a significant increase in Al/PET adhesion, while longer treatments have a detrimental effect. This may explain why most authors have not discovered the benefits of NH3 plasmas for improving the adhesion of metals on PET, and have preferred O2 or air treatments. The relative basicity of PET grafted with N-containing functionalities has been measured by means of X-ray Photoelectron Spectroscopy (XPS) analysis of samples exposed to vapors of trichloromethane, a Lewis acid molecular probe. The Al/PET adhesion was evaluated by means of a 180° Peel Test.  相似文献   

8.
Amine functionalization of Poly(ethylene-terephthalate) (PET) films for covalent binding of peptides is described. Ammonia plasma treatments have been used to graft nitrogen-containing functional groups onto the PET surface. The samples were then analyzed by X-ray photoelectron spectroscopy (XPS) and a parametric study was performed to define the best plasma grafting conditions. For biological tests, samples were sterilized by steam autoclaving: this induces a four to fivefold loss of the nitrogen functional groups on the polymer surface. XPS does not differentiate easily between the various nitrogen groups present on the surface so it is difficult to estimate the amount of surface amine groups available for direct coupling of bioactive molecules (proteins, peptides, nucleic acids, ...). To obtain a direct measurement of the amines present, we assayed for cysteine fixation through its carboxylic group by detection of the thiolaminoacid by XPS. We obtained cysteine fixation, showing the presence of grafted primary amine functions on PET surface after ammonia plasma treatment. Radiochemical assays were also made to quantify the amount of amine groups on plasma treated PET. XPS, cysteine fixation and radiochemical assays all show the presence of amine functions on ammonia plasma treated PET.  相似文献   

9.
Polyethyleneterephtalate (PET) and polytetrafluorethylene (PTFE) foils were modified by plasma discharge. The effect of plasma modification on polymer surface wettability and on properties of gold coatings were studied as a function of time from plasma exposure (aging time) and polymer substrate temperature. Thickness, sheet resistance, and surface topology of gold layers were studied. Aging of the plasma‐exposed samples is accompanied by increase in contact angle, which is explained by rearrangement of the polymer segments in the polymer surface monolayer, and a decrease in the concentration of polar groups. The aging also leads to a decline in surface roughness Ra measured by atomic force microscopy (AFM). Under deposition conditions, comparable thicknesses of deposited Au layers were prepared on pristine PET and plasma‐treated PET and PTFE samples. The thinnest Au layers were evaporated onto pristine PTFE. The sheet resistance decreases with increasing thickness of Au layer. Plasma treatment leads to an increase of PTFE surface roughness, which becomes even more pronounced after Au deposition. A higher roughness shows that the PET samples are deposited with the Au layer at temperatures above the glassy transition temperature Tg. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
Organoclays with various contents of hydroxyl groups and absorbed ammonium were prepared and compounded with poly(ethylene terephthalate) (PET), forming PET/clay nanocomposites via melt extrusion. Dilute solution viscosity techniques were used to evaluate the level of molecular weight of PET/clay nanocomposites. Actually, a significant reduction in PET molecular weight was observed. The level of degradation depended on both the clay structure and surfactant chemistry in organoclays. The composites, based on clay with larger amount of hydroxyl groups on the edge of clay platelets, experienced much more degradation, because the hydroxyl groups acted as Brønsted acidic sites to accelerate polymer degradation. Furthermore, organoclays with different amounts of absorbed ammonium led to different extents of polymer degradation, depending upon the acidic sites produced by the Hofmann elimination reaction of ammonium. In addition, the composite with better clay dispersion state, which was considered as an increasing amount of clay surface and ammonium exposed to the PET matrix, experienced polymer degradation more seriously. To compensate for polymer degradation during melt extrusion, pyromellitic dianhydride (PMDA) was used as chain extender to increase the intrinsic viscosity of polymer matrix; more importantly, the addition of PMDA had little influence on the clay exfoliation state in PET/clay nanocomposites.  相似文献   

11.
The emission from low-pressure microwave plasmas in the vacuum-ultraviolet (VUV) region (λ < 200 nm) was investigated in order to use these plasmas as light sources for the study of the VUV photochemistry of polyethylene (PE) and polypropylene (PP) as part of the study of plasma-polymer interaction. These polymers, immersed in low-presure oxygen, were exposed to radiation with wavelengths down to 112 nm, the cut off of magnesium fluoride used as a window to separate the polymer specimen from the plasma light source. Total oxygen incorporation in the surface [O], and the formation of hydroxyl, carbonyl, and carboxyl groups were measured using XPS in combination with chemical derivatizations, particularly their dependence upon the radiation spectrum and the oxygen pressure around the sample. In most experiments the surface oxygen concentration [O] attained a constant value that appears to be related to the initial oxidation rate; this suggests a competition between oxygen incorporation and chain scission reactions, followed by the removal of volatile oxidation products. PE is usually oxidized to a higher level than PP, the latter appearing to be more susceptible to reaction with atomic oxygen than PE. A general initiation mechanism for the VUV experiments is proposed that allows us to explain the observed differences in behavior between PE and PP, and the results obtained under different irradiation conditions. The nature of oxidation products is in both cases very similar to what is observed after direct plasma treatment of the polymers. We conclude that short wavelength radiation contributes very appreciably to the observed surface modification effects during plasma treatment of PE and PP. © 1995 John Wiley & Sons, Inc.  相似文献   

12.
The surface of several plasma-treated polymers after their tensile drawing is examined by microscopic study. This process is accompanied by the development of a surface micropattern that is characteristic of the rigid coating on a soft substratum system. The modified surface layer forms even during short-time plasma treatment (less than one minute). Treatment of the polymer and any further treatment insignificantly changes its mechanical properties. The mechanical characteristics (breaking strength and the elongation at break) of the plasma-modified surface PET layers are quantitatively estimated, and these characteristics are shown to be sensitive to the physical state of the polymer support.  相似文献   

13.
The surface treatment of poly(ethylene terephthalate) (PET) and poly(vinyl chloride) (PVC) films in cold plasma over 1–15 min was carried out. It was found that the subsequent deformation of the films is accompanied by a special type of surface structuring that has been previously observed for polymer films with a thin hard coating. It was shown that unlike metal coatings, the thickness of the modified surface layer slightly depends on the time of treatment in plasma. The previously developed approach to analysis of the emerging patterns makes it possible to evaluate the stress-strain properties of the coatings. It was first revealed that the tensile strength of the modified layer produced in PET by plasma treatment is ∼12.3 MPa and its elongation at break varies from 20 to 90%. The differences in the properties between the plasma-modified surface layers of the polymer and the metal coatings studied earlier are discussed.  相似文献   

14.
Lamination is a method utilized to protect flexible electroluminescence device against environmental hazards, such as dust, moisture, and water vapor. The materials are typically joined together using adhesive or cohesion of the materials during the lamination process. Polyethylene terephthalate (PET) is commonly used as the substrate film where electroluminescence patterns are printed. However, PET film has a relatively low surface energy and high contact angle, which would cause relatively weak laminating strength. This paper discusses the use of atmospheric plasma as a surface treatment method to modify PET and laminating films’ interface to improve bonding and laminating quality. Experimental results revealed that atmospheric plasma process reduced the contact angle of both PET and laminating films. Functional groups favoring hydrophilicity were found on the films’ interface after the atmospheric plasma treatment. These effects consequently increased surface energies of both films and favored bonding between the films. The treated films thus had increased laminating strength by approximately six times without compromising the transparency quality.  相似文献   

15.
The interactions of H2 and NH3 plasmas with the surfaces of various poly(alkylmethacrylate)s and of poly(phenylmethacrylate) have been studied with XPS and SSIMS. Experiments on poly(methylmethacrylate) reveal that during short treatment times with the NH3 plasma chain, scission takes place and nitrogen is not incorporated into the surface. The chain scission also takes place with the H2 plasma. With the aid of SSIMS results, the nature of the chain scission could be deduced. Comparison of these results with those on poly(n-butylmethacrylate) and poly(t-butylmethacrylate) reveals a reaction mechanism in which hydrogen atoms generated in both plasmas play an important role in the chain scission process. After longer treatment time with the NH3 plasma, the poly(methylmethacrylate) surface becomes deoxygenated and nitrogen is incorporated into surface structures of low molecular weight. Experiments on poly(phenylmethacrylate) reveal that already during short treatment times with the NH3 plasma, nitrogen is incorporated into the aromatic ring. Chain scission does not play an important role. One of the processes with the H2 plasma is hydrogenation of the aromatic ring, leading to poly(cyclohexylmethacrylate).  相似文献   

16.
In this work, low pressure glow discharge O2 plasma has been used to increase wettability in a LDPE film in order to improve adhesion properties and make it useful for technical applications. Surface energy values have been estimated using contact angle measurements for different exposure times and different test liquids. In addition, plasma-treated samples have been subjected to an aging process to determine the durability of the plasma treatment. Characterization of the surface changes due to the plasma treatment has been carried out by means of Fourier transformed infrared spectroscopy (FTIR) to determine the presence of polar species such as carbonyl, carboxyl and hydroxyl groups. In addition to this, atomic force microscopy (AFM) analysis has been used to evaluate changes in surface morphology and roughness. Furthermore, and considering the semicrystalline nature of the LDPE film, a calorimetric study using differential scanning calorimetry (DSC) has been carried out to determine changes in crystallinity and degradation temperatures induced by the plasma treatment. The results show that low pressure O2 plasma improves wettability in LDPE films and no significant changes can be observed at longer exposure times. Nevertheless, we can observe that short exposure times to low pressure O2 plasma promote the formation of some polar species on the exposed surface and longer exposure times cause slight abrasion on LDPE films as observed by the little increase in surface roughness.  相似文献   

17.
Structural changes induced by Ar plasma discharge in low and high density polyethylene (LDPE and HDPE) were studied by different techniques. AFM and SEM methods were used to determine surface morphology, the changes in chemical structure were followed using FTIR and UV-vis spectroscopy. The content and the depth profile of incorporated oxygen was determined by RBS method. The degree of polymer ablation was determined gravimetrically. Standard goniometry was used to determine contact angle and to follow aging of plasma modified polymer. As a result of plasma treatment a lamellar structure or spherulites appear on the surface of HDPE and LDPE, respectively. Pronounced increase of the surface roughness is observed on HDPE contrary to LDPE. Plasma treatment for 400 s leads to the ablation of the surface layer of about 0.6 and 1 μm thick for LDPE and HDPE, respectively. Plasma treatment results in oxidation of the polymer surface layer which is more pronounced in HDPE. Concentration maximum of incorporated oxygen lies 25 nm beneath the sample surface in both polymer types. After exposure to plasma discharge carbonyl, carboxyl and amide groups were detected in the polymer surface layer together with CC bonds either in aromatic or in aliphatic structures. Immediately after the plasma treatment strong decline of the contact angle is observed, the decline being larger in HDPE. Later, in aged specimens the contact angle increases rapidly. The increase, which may be due to rearrangement of degraded structures, is stronger in the specimens exposed to plasma for longer times.  相似文献   

18.
The translational motion of polymers is a complex process and has a big impact on polymer structure and chemical reactivity. The process can be described by the segment velocity autocorrelation function or its diffusion spectrum, which exhibit several characteristic features depending on the observational time scale—from the Brownian delta function on a large time scale, to complex details in a very short range. Several stepwise, more-complex models of translational dynamics thus exist—from the Rouse regime over reptation motion to a combination of reptation and tube-Rouse motion. Accordingly, different methods of measurement are applicable, from neutron scattering for very short times to optical methods for very long times. In the intermediate regime, nuclear magnetic resonance (NMR) is applicable—for microseconds, relaxometry, and for milliseconds, diffusometry. We used a variation of the established diffusometric method of pulsed gradient spin-echo NMR to measure the diffusion spectrum of a linear polyethylene melt by varying the gradient pulse width. We were able to determine the characteristic relaxation time of the first mode of the tube-Rouse motion. This result is a deviation from a Rouse model of polymer chain displacement at the crossover from a square-root to linear time dependence, indicating a new long-term diffusion regime in which the dynamics of the tube are also described by the Rouse model.  相似文献   

19.
In this work, the effects of oxygen plasma surface modification have been studied on electrospun polyether-based polyurethane in order to investigate the imposed limitations and possibilities to improve surface characteristics on fibrous assemblies. The evolution of induced changes in surface morphology, chemistry and wettability by the plasma treatment has been characterised for increasing plasma exposure time using scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and water contact angle measurements. Significant reduction in fibre diameter concomitant with progressing rough surface textures are found on the fibres in surface layers during early treatment phases while extended exposure eventually causes the fibre structure to deteriorate. Surface oxygen content and functionalities such as carbonyl and carboxyl increase slightly with longer treatments until loss of material integrity occurs. The results have also shown that oxygen plasma rapidly alters the initially strong hydrophobic character of the non-woven fibres to hydrophilic behaviour, allowing water penetration into the network, but without significant changes for increased exposure time. In addition, the response of red blood cell shape to pristine and oxygen plasma treated fibres were found to be similar. In both cases, a population of cells having fibre contact displayed protrusions while measurements showed that the cell function remain intact and indicated that the adhesion was non-specific. The reported findings yield useful process knowledge that can support the formation of well-defined fibre architectures and are valuable in the designs of electrospun polyurethane material systems utilising oxygen plasma surface modification.  相似文献   

20.
Chain folding in unoriented poly(ethylene terephthalate) (PET) films has been investigated as a function of annealing time and temperature. To meet this objective dynamic mechanical, infrared, and molecular weight measurements were used, together with selective chemical degradation to remove chain folds and amorphous regions. The β dispersion in the dynamic mechanical spectrum of PET is here tentatively associated with motions of methylene and/or carboxyl groups in irregular chain folds; the β dispersion is not found in quenched amorphous polymer, in polymer where amorphous regions and chain folds have been removed, or in highly annealed PET where the irregular folds have regularized. Upon mild crystallization and annealing (30 min at 110°C) of initially amorphous film a large β dispersion appears and then diminishes upon further annealing at 220°C. As the β dispersion diminishes, the infrared regular fold band increases more than the crystallinity band, indicating regularization of folds. The molecular weight of the degraded residue corresponds approximately to typical fold-period dimensions (~130 Å), and increases on annealing as expected from lamellar thickening. The degradation process has, by fold removal, reduced the chains in the crystals to a very short, uniform length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号