首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complexes formed by interaction of trans-diamminepalladium(II) chloride (PdII) with 1,6-hexanediamine (HDA) and nitrogen bases (B) (imidazole derivatives or methylamine) are investigated at 25°C and 0.1?mol?L?1 NaNO3 ionic strength using potentiometric measurements. The stability constants of all possible mononuclear and binuclear complexes were determined. The concentration distribution diagram of the binuclear PdII-HDA-Im derivative reveals the complexes predominating in the physiological pH range; the reaction of the binuclear PdII-HDA-PdII with imidazole derivatives is quite feasible.  相似文献   

2.
Coordination compounds Cu2(H2L1)Cl4 (I), Pd2(H2L1)Cl4 (II), Cu2(H2L2)Cl4 (III), and Pd2(H2L2) Cl4 (IV) with chiral bis-α-sulfanyloximes, the derivatives of the monoterpenoid (−)-α-pinene, were obtained. The complexes I and III are paramagnetic (μeff = 2.45 and 2.67 μB, respectively), II and IV are diamagnetic. According to IR spectroscopy, in the compounds I–IV the nearest environment of Cu and Pd atoms includes N, S, and Cl atoms. The values of μeff and parameters of ESR spectra of the solid phase and solutions of I and III show a binuclear structure of the Cu(II) complexes. Parameters of the 1H and 13C NMR spectra of compounds II and IV indicate the formation of binuclear Pd(II) complexes of C 2 symmetry and the closure of fivemembered chelate rings PdNSC2. The PdCl2 fragments are in transoid position. H2L1 and H2L2 are tetradentate bridging chelating ligands.  相似文献   

3.
The formation equilibria of copper(II) complexes and the ternary complexes Cu(HMI)L (HMI=4-Hydroxymethyl-imidazole, L=amino acid, amides or DNA constituents) have been investigated. Ternary complexes are formed by a simultaneous mechanism. The results showed the formation of Cu(HMI)L and Cu(HMI,H−1)(L) complexes. The stability of ternary complexes was quantitatively compared with their corresponding binary complexes in terms of the parameters Δlog 10 K and log 10 X. The effect of the side chains of amino acid ligands (ΔR) on complex formation was discussed. The concentration distributions of various species formed in solution were also evaluated as a function of pH. The thermodynamic parameters ΔH° and ΔS° calculated from the temperature dependence of the equilibrium constants are investigated. The effects of dioxane as a solvent, on the protonation constant of HMI and the formation constants of CuII–HMI complexes, were discussed.  相似文献   

4.
Synthesis, Structure and EPR Investigations of binuclear Bis(N,N,N?,N?‐tetraisobutyl‐N′,N″‐isophthaloylbis(thioureato)) Complexes of CuII, NiII, ZnII, CdII and PdII The synthesis of binuclear CuII‐, NiII‐, ZnII‐, CdII‐ and PdII‐complexes of the quadridentate ligand N,N,N?,N?‐tetraisobutyl‐N′,N″‐isophthaloylbis(thiourea) and the crystal structures of the CuII‐ and NiII‐complexes are reported. The CuII‐complex crystallizes in two polymorphic modifications: triclinic, (Z = 1) and monoclinic, P21/c (Z = 2). The NiII‐complex was found to be isostructural with the triclinic modification of the copper complex. The also prepared PdII‐, ZnII‐ and CdII‐complexes could not be characterized by X‐ray analysis. However, EPR studies of diamagnetically diluted CuII/PdII‐ and CuII/ZnII‐powders show axially‐symmetric g and A Cu tensors suggesting a nearly planar co‐ordination within the binuclear host complexes. Diamagnetically diluted CuII/CdII powder samples could not be prepared. In the EPR spectra of the pure binuclear CuII‐complex exchange‐coupled CuII‐CuII pairs were observed. According to the large CuII‐CuII distance of about 7,50Å a small fine structure parameter D = 26·10?4 cm?1 is observed; T‐dependent EPR measurements down to 5 K reveal small antiferromagnetic interactions for the CuII‐CuII dimer. Besides of the dimer in the EPR spectra the signals of a mononuclear CuII species are observed whose concentration is T‐dependent. This observation can be explained assuming an equilibrium between the binuclear CuII‐complex (CuII‐CuII pairs) and oligomeric complexes with “isolated” CuII ions.  相似文献   

5.
The oxidation of lower aliphatic alcohols C1–C4 with dioxygen to form the corresponding carbonyl compounds in the presence of the PdII tetraaqua complexes and FeII-FeIII aqua ions in an aqueous medium was studied at 40–80 °C. The introduction of an aromatic compound (acetophenone, benzonitrile, phenylacetonitrile, o-cyanotoluene, nitrobenzene) and FeII aqua ion instead of the FeIII aqua ion into the reaction system increases substantially the catalytic activity and the yield of the carbonyl compound. The key role of the Pd species in the intermediate oxidation state stabilized by the aromatic additive in the catalytic cycle of alcohol oxidation with dioxygen to the carbonyl compound was shown. An increase in the kinetic isotope effect with an increase in the temperature of methanol oxidation indicates a change in the rate-determining step of alcohol oxidation with dioxygen in the presence of PdII-FeII-FeIII and the aromatic compound. At temperatures below 60 °C, the catalytically active palladium species are mainly formed upon the reduction of the PdII tetraaqua complex with the FeII aqua ion, whereas at higher temperatures the reaction between the alcohol and PdII predominates. The mechanism and kinetic equation of the process were proposed. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 842–848, May, 2007.  相似文献   

6.
Formal and informal methods for advancing hypotheses on mechanisms were used in a study of the oxidative carbonylation of phenylacetylene to methyl phenylpropiolate catalyzed by the PdCl2−CuCl−CuCl2 system. The hypotheses remaining after discrimination and consistent with all experimental data include the steps of formation of the CuI alkynyl complex, transfer of the phenylethynyl group from CuI to PdII, insertion of carbon monoxide into a Pd−C or Pd−OMe bond of the PdII σ-alkynyl complex. Comparison of the formal and informal methods for advancing hypotheses confirmed a higher effeciency of the first method. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 882–889, May, 1999.  相似文献   

7.
A new alcohol soluble functionalized vic-dioxime, bis-[(1-hydroxyhexyl)-(8,9-hydroxyimino)-7,10-dithiahexacosane (LH2), and its alcohol-soluble mono and dinuclear complexes (NiII, CuII, CoII, MnII, PdII and UO 2 II ) have been prepared from 6-mercapto-1-hexanol and (E,E)-dichloroglyoxime under high dilution basic conditions. Reactive polyalcohol moieties appended at the periphery of the oxime containing two different heteroatoms (S-, O-), serve as a weak exocyclic binding sites for PdII and AgI metal ions and also provide solubility for the vic-dioxime complexes in low molecular-weight alcohols. Both mono-nuclear (LH)2M and homodinuclear (LH)2(UO2)2(OH)2 and heterotrinuclear (LH)2MM 2 Xn, where M = CoII M′ = PdII, X = Cl, n = 4 and AgI X = NO 3 , n = 2) complexes have been obtained with a 1:2, 2:2, 3:2 metal/ligand ratio, respectively. Electronic spectra of the modified vic-dioximes exhibit monitorable changes in UV. All mono and dinuclear-complexes are soluble in common organic solvents. The elemental analysis, 1H-n.m.r, i.r., u.v–vis, and f.a.b.–m.s data and by cyclic and differential pulse voltammetry measurements are presented.  相似文献   

8.
The characteristic features of intramolecular spin exchange in 14 complexes of AgI, HgII, NiII, PdII, PtII, AuIII, and PtIV with spin-labeled ligands were studied by ESR spectroscopy. The measured values of the exchange integral ‖J‖ and the differences between the enthalpies of the efficient conformations (ΔH) were compared with the electronic polarization (refraction)R f of the NiII, PdII, and PtII ions and Klopman's rigidity parameters σK, which characterize the total polarazibility of the ions and the degree of covalence of the bond between the metal atom and the donor atom of the ligand, respectively. Delocalization of the electron spin density and the efficiency of spin exchange are determined by the relative contributions of the s, p, and d orbitals, which produce the overlap integral of wave functions, ‖J‖, and by the geometric features of the coordination polyhedron, which affect the mutual orientation of the N−O fragments. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2005–2009, October, 1999.  相似文献   

9.
Zou  Jianzhong  Wu  Yong  Duan  Chunyin  Liu  Yongjiang  Xu  Zheng 《Transition Metal Chemistry》1998,23(3):305-308
Three binuclear copper(II) complexes bridged by three different bridging ligands: μ-TPHA (terephthalato), μ-PHTA (phthalato) and μ-TCB (tetracarboxylatobenzene) have been synthesized. The crystal structure of [{Cu(dipn)}2(μ-TPHA)](ClO4)2 where dipn = N-(3-aminopropyl)-1,3-propanediamine was solved at room temperature. The [{Cudipn}2(μ-TPHA)](ClO4)2 complex consists of a μ-terephthalato bridging binuclear copper(II) cationic unit and two non-coordinated perchlorate anions. The TPHA ligand bridges in a bismonodentate fashion. The environment of the copper(II) ion is a distorted plane-square-planar coordination sphere. The magnetic properties of the three complexes have been investigated in the 75–300 K range, and show that the geometry of the CuII atom is the important factor for magnetic interactions in the terephthalato bridging binuclear copper(II) complexes. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
The products of interaction of components in the donor-acceptor electron-transport (DAET) DMSO−HBr system and their complex formation with the metallic palladium surface were studied. H2O and Me2S (main reaction products) and CO, CS2, C2H6, MeBr, H, and CH4 (minor reaction products) were found in the gas phase by mass spectrometry (MS). The samples of metallic palladium treated with the DAET system with a components ratio corresponding to the minimum and maximum rates of metal dissolution were studied by the methods of thermoprogrammed desorption with MS detection (TPD-MS) and XPS. According to the TPD-MS data, two forms of Me2S are present on the metal surface, whereas the XPS method detected two complexes with the molecular compositions PdIIBr4S1.26 and PdIIBr3.86S1.42. The addition of an aqueous solution of NaOH to the system results in the formation of HCOONa, which indicates that compounds (CH2O, HCOOH) capable of reducing the palladium complexes are present in the DAET system. Published inIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1740–1743, October, 2000.  相似文献   

11.
A series of binuclear CoII, NiII, CuII and ZnII complexes having μ-1,2 diazine bridging have been prepared and characterized by various physico-chemical methods. The hexadentate ligands were synthesized by condensing 3,5-dichloroformyl-1H-pyrazole with 2-hydrazinobenzothiazole (L1H) or 4-aminoantipyrine (L2H) in 1:2 ratio. Gel electrophoresis data indicate cleavage of E. coli DNA to a minute extent by both [Co2L2(μ-Cl)Cl2(H2O)2]·H2O and [Ni2L2(μ-Cl)Cl2(H2O)2]. Conversely, the data for the remaining complexes indicated binding but not cleavage. These results were confirmed by viscosity measurements and absorption spectral studies. An intercalative binding mode is predicted when the title complexes interact with DNA.  相似文献   

12.
A series of cyclometalated PdII complexes that contain π‐extended R? C^N^N? R′ (R? C^N^N? R′=3‐(6′‐aryl‐2′‐pyridinyl)isoquinoline) and chloride/pentafluorophenylacetylide ligands have been synthesized and their photophysical and photochemical properties examined. The complexes with the chloride ligand are emissive only in the solid state and in glassy solutions at 77 K, whereas the ones with the pentafluorophenylacetylide ligand show phosphorescence in the solid state (λmax=584–632 nm) and in solution (λmax=533–602 nm) at room temperature. Some of the complexes with the pentafluorophenylacetylide ligand show emission with λmax at 585–602 nm upon an increase in the complex concentration in solutions. These PdII complexes can act as photosensitizers for the light‐induced aerobic oxidation of amines. In the presence of 0.1 mol % PdII complex, secondary amines can be oxidized to the corresponding imines with substrate conversions and product yields up to 100 and 99 %, respectively. In the presence of 0.15 mol % PdII complex, the oxidative cyanation of tertiary amines could be performed with product yields up to 91 %. The PdII complexes have also been used to sensitize photochemical hydrogen production with a three‐component system that comprises the PdII complex, [Co(dmgH)2(py)Cl] (dmgH=dimethylglyoxime; py=pyridine), and triethanolamine, and a maximum turnover of hydrogen production of 175 in 4 h was achieved. The excited‐state electron‐transfer properties of the PdII complexes have been examined.  相似文献   

13.
Several new complexes of a tridentate ONS Schiff base derived from the condensation of S-benzyldithiocarbazate with salicylaldehyde have been characterised by elemental analyses, molar conductivity measurements and by i.r. and electronic spectra. The Schiff base (HONSH) behaves as a dinegatively charged ligand coordinating through the thiolo sulphur, the azomethine nitrogen and the hydroxyl oxygen. It forms mono-ligand complexes: [M(ONS)X], [M=NiII, CuII, CrIII, SbIII, ZnII, ZrIV or UVI with X = H2O, Cl]. The ligand produced a bis-chelated complex of composition [Th(ONS)2] with ThIV. Square-planar structures are proposed for the NiII and CuII complexes. Antimicrobial tests indicate that the Schiff base and five of the metal complexes of CuII, NiII, UVI, ZnII and SbIII are strongly active against bacteria. NiII and SbIII complexes were the most effective against Pseudomonas aeruginosa (gram negative), while the CuII complex proved to be best against Bacillus cereus (gram positive bacteria). Antifungal activities were also noted with the Schiff base and the UVI complex. These compounds showed positive results against Candida albicans fungi, however, none of them were effective against Aspergillus ochraceous fungi. The Schiff base and its zinc and antimony complexes are strongly active against leukemic cells (CD50 = 2.3–4.3 μg cm−3) while the copper, uranium and thorium complexes are moderately active (CD50 = 6.9–9.5 μg cm−3). The nickel, zirconium and chromium complexes were found to be inactive. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
The formation of CuII–Br–FeIII-type heterobimetallic complexes was observed spectrophotometrically, given the non-additivity of the spectra from the copper(II) and iron(III) complexes. The kinetics of the oxidation of promazine radical (ptz+•) to promazine 5-oxide, by iron(III) bromides, copper(II) bromides, and a mixture of these complexes in acidic aqueous solutions, have been studied using UV–Vis spectroscopy at I = 1.0 M (H+, Cu2+, Fe3+, Br) and T = 318 K. Copper(II) inhibits the oxidation of the promazine radical to promazine sulfoxide using iron(III) complexes. A rate retardation effect, characterized by the dependence of the pseudo second-order rate constant (k II) on the copper(II) concentration k II = a/(1 + b[CuII]), can be rationalized as a result of CuII–Br–FeIII-type heterobimetallic complex formation.  相似文献   

15.
New PdI and Pd0 carbonyl bromide complexes co-existing in the same crystal were synthesized and studied by X-ray diffraction analysis. The crystals consist of dimeric complex anions composed of the central Pd(μ-CO)2Pd fragment and four partially disordered terminal ligands (CO and Br). The complexes were characterized by IR, ESR, and X-ray photoelectron spectroscopy. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1349–1355, June, 2005.  相似文献   

16.
The Pd0 complex 1 that bears the Trost ligand 2 undergoes a facile redox reaction with 1,4‐biscarbonates 5 b – d and rac‐ 22 under formation of the diamidato–PdII complex 7 and the corresponding 1,3‐cycloalkadienes 8 b – d . The redox deactivation of complex 1 was the dominating pathway in the reaction of 5 b – d with HCO3? at room temperature. However, at 0 °C the six‐membered biscarbonate 5 b , catalytic amounts of complex 1 , and HCO3? mainly reacted in an allylic alkylation, which led to a highly selective desymmetrization of the substrate and gave alcohol 6 b with ≥99 % ee in 66 % yield. An increase of the catalyst loading in the reaction of 5 b with 1 and HCO3? afforded the bicyclic carbonate 12 b (96 % ee, 92 %). Formation of carbonate 12 b involves two consecutive inter‐ and intramolecular substitution reactions of the π‐allyl–PdII complexes 16 b and 18 b , respectively, with O‐nucleophiles and presumably proceeds through the hydrogen carbonate 17 b as key intermediate. The intermediate formation of 17 b is also indicated by the conversion of alcohol rac‐ 6 b to carbonate 12 b upon treatment with HCO3? and 1 . The Pd0‐catalyzed desymmetrization of 5 b with formation of 12 b and its hydrolysis allow an efficient enantioselective synthesis of diol 13 b . The reaction of the seven‐membered biscarbonate 5 c with ent‐ 1 and HCO3? afforded carbonate ent‐ 12 c (99 % ee, 39 %). The Pd0 complex 1 is stable in solution and suffers no intramolecular redox reaction with formation of complex 7 and dihydrogen as recently claimed for the similar Pd0 complex 9 . Instead, complex 1 is rapidly oxidized by dioxygen to give the stable PdII complex 7 . Thus, formation of the PdII complex 10 from 9 was most likely due to an oxidation by dioxygen. Oxidative workup (air) of the reaction mixture stemming from the desymmetrization of 5 c catalyzed by 1 gave the PdII complex 7 in high yield besides carbonate 12 c .  相似文献   

17.
    
The reaction of the tetranuclear cluster Pd4(CO)4(OOCCF3)4 witho-nitrosotoluene afforded the Pd11-containing complex [o-(NO)(CH2)C6H4]2Pd2(μ-OOCCF3)2. The elimination of CO2 and the formation of organic products of transformation of tolylnitrene species (azotoluene, ditolylamine, and tolylisocyanate) were observed in the course of the reaction. The title complex was characterized by IR and1H NMR spectroscopy. Its structure was established by X-ray diffraction analysis. It was suggested that the reaction proceeds through intermediate formation of nitrene complexes. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 147–150, January, 2000.  相似文献   

18.
The reaction of the tetranuclear cluster Pd4(CO)4(OOCCF3)4 witho-nitrosotoluene afforded the Pd11-containing complex [o-(NO)(CH2)C6H4]2Pd2(μ-OOCCF3)2. The elimination of CO2 and the formation of organic products of transformation of tolylnitrene species (azotoluene, ditolylamine, and tolylisocyanate) were observed in the course of the reaction. The title complex was characterized by IR and1H NMR spectroscopy. Its structure was established by X-ray diffraction analysis. It was suggested that the reaction proceeds through intermediate formation of nitrene complexes. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 147–150, January, 2000.  相似文献   

19.
Diamagnetic Pd(II) complexes with the chiral ethylenediaminodioxime (H 2 L) and bis-α-thiooxime (H2L1), the derivatives of monoterpenoid (+)-3-carene, of the composition Pd2(H2L)Cl4(I), Pd2(H2L1)Cl4 (II), and the solvate Pd2(H2L1)Cl4·3DCl3 (III) were synthesized. The crystal structures of complex I and solvate III were determined from X-ray diffraction data. The structures consist of acentric binuclear molecules with the coordination cores PdN2Cl2 (in I) and PdNSCl2 (in III) in the form of the distorted squares. In complex I, each Pd atom coordinates two N atoms of the tetradentate bridge-cyclic ligand H2L and two Cl atoms; in compound III, one N and one S atom of the tetradentate bridge-cyclic ligand H2L1, and 2 Cl atoms. The CDCl3 molecules in compound III lie in the cavities formed by the molecules of complex II. In both structures, the PdCl2 fragments are in the trans-positions. The 1H NMR spectra indicate that the structures of complexes I, II in solutions are similar to the structures of compounds I, III in the solid state. Original Russian Text ? T.E. Kokina, L.I. Myachina, L.A. Glinskaya, A.V. Tkachev, R.F. Klevtsova, L.A. Sheludyakova, S.N. Bizyaev, A.M. Agafontsev, N.B. Gorshkov, S.V. Larionov, 2008, published in Koordinatsionnaya Khimiya, 2008, Vol. 34, No. 2, pp. 120–132.  相似文献   

20.
Synthesis of new bimetallic water-soluble complexes [C12H23N4O7CoCu]5H2O · Cl2 (2), [C12H23N4O7CoNi]5H2O · Cl2 (3) and [C12H23N4O7CoMn]5H2O · Cl2 (4) has been achieved by reaction of the CoIII complex [C12H21N4O6Co]5H2O (1), with transition metal ions. Various physico-chemical techniques: elemental analysis, i.r., u.v.–vis., e.p.r,1H-, 13C- and 2D-n.m.r, spectroscopy, electrochemistry and molar conductance measurements were employed to characterize the complexes. The interaction of the monometallic complex (1) and bimetallic complexes (2–4) with calf thymus DNA have been carried out by u.v.–vis. titration, cyclic voltammetry (c.v.) and viscosity measurements. The intrinsic binding constant Kb of the complexes has been calculated. The absorption spectra of complexes exhibit a red shift with an overall ‘hyperchromic effect’ in the presence of CT-DNA. The binding affinity of the bimetallic complexes to calf thymus DNA is twofold in comparison with complex (1). The intrinsic binding constant value Kb of complex (1) was found to be 1.2 × 103 M−1, while the Kbvalue of complexes (2–4) were of the order of 1.4 × 103, 2.2 × 103 and 2.1 × 103 M−1, respectively. The Kb values are close to the border between classical and non-classical intercalation that indicates that the binding mode may be electrostatic, probably with covalent preference in bimetallic complexes. The electrochemical behavior of complexes (1–4) was studied in H2O and displays quasireversible CoII/CoI, CuII/CuI, NiII/NiI and MnII/MnIredox couples. The voltammetric studies of the complexes in the absence and in the presence of DNA exhibit a shift in the formal potential E0 and ratio of cathodic to anodic peak currents ipa/ipc, indicating binding of the complexes to calf thymus DNA. The viscosity of DNA decreases with increasing concentration of the complex, suggesting that complexes (2–4) bind to calf thymus DNA by electrostatic association with covalent preference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号