首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 372 毫秒
1.
Summary  An exact, three-dimensional analysis is developed for a penny-shaped crack in an infinite transversely isotropic piezoelectric medium. The crack is assumed to be parallel to the plane of isotropy, with its faces subjected to a couple of concentrated normal forces and a couple of point electric charges that are antisymmetric with respect to the crack plane. The fundamental solution of a concentrated force and a point charge acting on the surface of a piezoelectric half-space is employed to derive the integral equations for the general boundary value problem. For the above antisymmetric crack problem, complete expressions for the elastoelectric field are obtained. A numerical calculation is finally performed to show the piezoelectric effect in piezoelectric materials. It is noted here that the present analysis is an extension of Fabrikant's theory for elasticity. Received 30 August 1999; accepted for publication 1 March 2000  相似文献   

2.
A static-equilibrium problem is solved for an electroelastic transversely isotropic medium with a flat crack of arbitrary shape located in the plane of isotropy. The medium is subjected to symmetric mechanical and electric loads. A relationship is established between the stress intensity factor (SIF) and electric-displacement intensity factor (EDIF) for an infinite piezoceramic body and the SIF for a purely elastic material with a crack of the same shape. This allows us to find the SIF and EDIF for an electroelastic material directly from the corresponding elastic problem, not solving electroelastic problems. As an example, the SIF and EDIF are determined for an elliptical crack in a piezoceramic body assuming linear behavior of the stresses and the normal electric displacement on the crack surface __________ Translated from Prikladnaya Mekhanika, Vol. 41, No. 11, pp. 67–77, November 2005.  相似文献   

3.
Three-dimensional fundamental solutions corresponding to a unit point force and point electric charge are obtained for a semi-infinite transversely isotropic piezoelectric solid. The free boundary is parallel to the plane of isotropy. They can be used as the Green’s function for solving the problem of a flat circular crack near the free surface which will be dealt with in Part II of this work.  相似文献   

4.
The hyper-singular boundary integral equation method of crack analysis in three-dimensional transversely isotropic magnetoelectroelastic media is proposed. Based on the fundamental solutions or Green’s functions of three-dimensional transversely isotropic magnetoelectroelastic media and the corresponding Somigliana identity, the boundary integral equations for a planar crack of arbitrary shape in the plane of isotropy are obtained in terms of the extended displacement discontinuities across crack faces. The extended displacement discontinuities include the displacement discontinuities, the electric potential discontinuity and the magnetic potential discontinuity, and correspondingly the extended tractions on crack face represent the conventional tractions, the electric displacement and the magnetic induction boundary values. The near crack tip fields and the intensity factors in terms of the extended displacement discontinuities are derived by boundary integral equation approach. A solution method is proposed by use of the analogy between the boundary integral equations of the magnetoelectroelastic media and the purely elastic materials. The influence of different electric and magnetic boundary conditions, i.e., electrically and magnetically impermeable and permeable conditions, electrically impermeable and magnetically permeable condition, and electrically permeable and magnetically impermeable condition, on the solutions is studied. The crack opening model is proposed to consider the real crack opening and the electric and magnetic fields in the crack cavity under combined mechanical-electric-magnetic loadings. An iteration approach is presented for the solution of the non-linear model. The exact solution is obtained for the case of uniformly applied loadings on the crack faces. Numerical results for a square crack under different electric and magnetic boundary conditions are displayed to demonstrate the proposed method.  相似文献   

5.
Using the hypersingular integral equation method based on body force method, a planar crack in a three-dimensional transversely isotropic piezoelectric solid under mechanical and electrical loads is analyzed. This crack problem is reduced to solve a set of hypersingular integral equations. Compare with the crack problems in elastic isotropic materials, it is shown that for the impermeable crack, the intensity factors for piezoelectric materials can be obtained from those for elastic isotropic materials. Based on the exact analytical solution of the singular stresses and electrical displacements near the crack front, the numerical method of the hypersingular integral equation is proposed by the finite-part integral method and boundary element method, which the square root models of the displacement and electric potential discontinuities in elements near the crack front are applied. Finally, the numerical solutions of the stress and electric field intensity factors of some examples are given.  相似文献   

6.
In this paper, the problem of a crack embedded in a half-plane piezoelectric solid with traction-induction free boundary is analyzed. A system of singular integral equations is formulated for the materials with general anisotropic piezoelectric properties and for the crack with arbitrary orientation. The kernel functions developed are in complex form for general anisotropic piezoelectric materials and are then specialized to the case of transversely isotropic piezoelectric materials which are in real form. The obtained coupled mechanical and electric real kernel functions may be reduced to those kernel functions for purely elastic problems when the electric effects disappear. The system of singular integral equations is solved numerically and the coupling effects of the mechanical and electric phenomena are presented by the generalized stress intensity factors for transversely isotropic piezoelectric materials.  相似文献   

7.
余迎松  秦太验 《力学与实践》2005,27(3):40-42,72
采用Somigiliana公式给出了三维横观各向同性压电材料中的非渗漏裂纹问题的一般解和超奇异积分方程,其中未知函数为裂纹面上的位移间断和电势间断.在此基础上,使用有限部积分和边界元结合的方法,建立了超奇异积分方程的数值求解方法,并给出了一些典型数值算例的应力强度因子和电位移强度因子的数值结果,结果令人满意.  相似文献   

8.
The magnetoelastic stress-strain problem for a transversely isotropic ferromagnetic body with an elliptical crack in the isotropy plane is solved explicitly. The body is in an external magnetic field perpendicular to the isotropy plane. The magnetic field induces elastic strains and an internal magnetic field in the body. The main characteristics of stress-strain state and induced magnetic field are determined and their features in the neighborhood of the crack are analyzed. Formulas for the stress intensity factors of the mechanical and magnetic fields near the crack tip are presented__________Translated from Prikladnaya Mekhanika, Vol. 41, No. 1, pp. 48–59, January 2005.  相似文献   

9.
The problem of two unequal collinear straight cracks weakening a poled transversely isotropic piezoelectric ceramic is addressed under semi-permeable electric boundary conditions on the crack faces. The plate has been subjected to combined in-plane normal(to the faces of the cracks) mechanical and electric loads. Problem is formulated employing Stroh formalism and solved using complex variable technique. The elastic field, electric field and energy release rate are obtained in closed analytic form. A case study is presented for poled PZT-5H cracked plate to study the effect of prescribed mechanical load, electric load, inter-crack distance and crack lengths on crack arrest parameters stress intensity factor (SIF), electric displacement intensity factor (EDIF) and mechanical and total energy release rates (ERR). Moreover a comparative study is done of impermeable and semi-permeable crack face boundary conditions on SIF, EDIF and ERR, and results obtained is presented graphically. It is observed that the effect of dielectric medium in the crack gap cannot be ignored.  相似文献   

10.
Summary  The anti-plane problem of N collinear interfacial cracks between dissimilar transversely isotropic piezoelectric media, which are subjected to piecewise uniform out-of-plane mechanical loading combined with in-plane electric loading at infinity, and also a line loading at an arbitrary point, is addressed by using the complex function method. In comparison with other relevant works, the present study has two features: one is that the analysis is based on the permeable crack model, i.e. the cracks are considered as permeable thin slits, and, thus, both the normal component of electric displacement and the tangential component of electric field are assumed to be continuous across these slits. The other feature is that explicit closed-form solutions are given not only in piezoelectric media, but also inside cracks when the media are subjected to the most general loading. It is shown that the singularities of electric displacement and electric field in the media are always dependent on that of stress for the general case of loading, and all the singularities of field variables are independent of the applied uniform electric loads at infinity. For the interfacial cracks the electric field is square-root singular at the crack tips and shows jumps across the interface, while the normal component of the electric field is linearly variable inside the crack, but the tangential component is square-root singular. However, for a homogeneous medium with collinear cracks, the electric field is always nonsingular in the medium while the electric displacement exhibits square-root singularity. Moreover, in this case, the electric field inside any crack is equal to a constant when uniform loads are applied at infinity. Received 22 November 1999; accepted for publication 20 July 2000  相似文献   

11.
The paper presents a three-dimensional solution to the equilibrium equations for linear elastic transversely isotropic inhomogeneous media. We assume that the material has constant Poisson’s ratios, and its Young’s and shear moduli have the same functional form of dependence on the co-ordinate normal to the plane of isotropy. We show, apparently for the first time, that stresses and displacements in such an inhomogeneous transversely isotropic elastic solid can be represented in terms of two displacement functions which satisfy the second- and fourth-order partial differential equations. We examine and discuss key aspects of the new representation; they include the relationship between the new displacement functions and Plevako’s solution for isotropic inhomogeneous material with constant Poisson’s ratio as well as the application of the new representation to some important classes of three-dimensional elasticity problems. As an example, the displacement function is derived that can be used to determine stresses and displacements in an inhomogeneous transversely isotropic half-space which is subjected to a concentrated force normal to a free surface and applied at the origin (Boussinesq’s problem).  相似文献   

12.
A plane problem for two identical piezoelectric semi-infinite spaces adhered by means of a thin isotropic interlayer is considered. It is assumed that a crack of a limited electric permeability occurs in the interlayer parallel to its faces. Combined electromechanical loading is prescribed at infinity. It is assumed that the interlayer is softer than the adherent materials. To avoid the singularities, which are typical for the Griffith crack model, two distinct zones – a zone of mechanical yielding and a zone of electrical saturation – of unknown lengths are introduced as crack continuations. These lengths can be essentially different, with the zone of mechanical yielding significantly longer or shorter than the zone of electrical saturation. Assuming that the interlayer thickness tends to zero, a constant normal stress is prescribed in the zone of mechanical yielding and a saturated electrical displacement is prescribed in the zone of electrical saturation. Outside of these zones, the semi-infinite spaces are assumed to be perfectly bonded. This formulation results in a linear fracture mechanics problem with unknown pre-fracture zone lengths. The problem, formulated mathematically by a system of two equations of linear relationship, is solved exactly. The unknown yield and saturated zones lengths are found from the conditions of finiteness of stress and electrical displacement at the ends of these zones for the both cases when the electrical saturated zone is longer and shorter than the zone of mechanical yielding. It is shown that the same equation as for the Griffith crack model can be used for the determination of the electrical displacement in the crack region. The main results of the paper are obtained in the form of simple analytical equations which are convenient for engineering applications. Some numerical illustrations in graphical and tabular form show dependencies of the pre-fracture zone lengths, the energy release rate, the mechanical displacement and electrical potential jumps on the electromechanical loading and the electrical permeability of the crack medium.  相似文献   

13.
压电介质中受拉伸与弯曲联合作用的圆币形裂纹问题   总被引:2,自引:0,他引:2  
以弹性位移分量和电势函数为基本未知量时,横观各向同性压电介质非轴对称三维问题的控制微分方程是四个二阶线性偏微分方程相联立的方程组。本文导出了用四个调和函数表示位移及电势的该方程组的势函数通解。作为通解的应用举例,文中求解了压电陶瓷材料中受拉伸与弯曲联合作用的圆币形裂纹问题,得到了裂纹尖端附近应力场及电位移场的解析表达式。结果表明裂尖场以及应力强度因子和电位移强度因子均表现出复杂的机-电耦合行为。  相似文献   

14.
The integral-differential equations for three-dimensional planar interfacial cracks of arbitrary shape in transversely isotropic bimaterials were derived by virtue of the Somigliana identity and the fundamental solutions, in which the displacement discontinuities across the crack faces are the unknowns to be determined. The interface is parallel to both the planes of isotropy. The singular behaviors of displacement and stress near the crack border were analyzed and the stress singularity indexes were obtained by integral equation method. The stress intensity factors were expressed in terms of the displacement discontinuities. In the non-oscillatory case, the hyper-singular boundary integral-differential equations were reduced to hyper-singular boundary integral equations similar to those of homogeneously isotropic materials.  相似文献   

15.
采用了在径向极化情况下横观各向同性的线性本构关系,考虑了材料性质沿径向的梯度分布,对功能梯度压电材料圆环在给定的位移和电势边界条件下,导出了问题的一般解.推导了外壁固定、接地,内壁沿垂向有一微小位移、电势为反对称分布问题的解析解,并计算了该问题在位移和电势作用情况下的位移、电势在不同梯度分布时的数值结果.  相似文献   

16.
黄弘读  侯鹏飞 《力学季刊》2001,22(4):508-511
本文利用Chen和Shioya给出的在横观各向同性压电无限体内币形裂纹上下表面作用对称法向点力和点电荷情形下的解,结合压电材料之功的互等定,用初等函数的形式给出了在压电无限体中任意一点作用任意点力和点电荷情形下币形裂纹的张开位移,并对PZT-4压电陶瓷和非压电材料作了计算分析。  相似文献   

17.
The Schmidt method is adopted to investigate the fracture problem of multiple parallel symmetric and permeable finite length mode-III cracks in a functionally graded piezoelectric/piezomagnetic material plane. This problem is formulated into dual integral equations, in which the unknown variables are the displacement jumps across the crack surfaces. In order to obtain the dual integral equations, the displacement jumps across the crack surfaces are directly expanded as a series of Jacobi polynomials. The results show that the stress, the electric displacement, and the magnetic flux intensity factors of cracks depend on the crack length, the functionally graded parameter, and the distance among the multiple parallel cracks. The crack shielding effect is also obviously presented in a functionally graded piezoelectric/piezomagnetic material plane with mul- tiple parallel symmetric mode-III cracks.  相似文献   

18.
乔继彤  张若京 《力学季刊》2000,21(4):487-491
本文采用奇异积分方程法分析了横观各向同性体中的埋藏裂纹。建立了张开型埋藏裂纹的Cauchy型奇异积分方程。当裂纹面和弹性对称轴垂直时,得到的裂纹张开位移方程的求解与各向同性情况类似。当裂纹面和弹性对称轴平行时,根据加权余量法,建立了弱解方程。给出两个算例,计算了圆形裂纹和椭圆形裂纹上的张开位移分布。数值结果表明:本文的方法是有效的。横观各向同性体中,埋藏裂纹方位任意时的裂纹张开位移方程,根据本文的方法易于得到。  相似文献   

19.
The magnetoelastic problem for a transversely isotropic ferromagnetic body with a parabolic crack in the plane of isotropy is solved explicitly. The body is in an external magnetic field, which is perpendicular to the plane of isotropy. The field induces elastic strains and a magnetic field in the body. The characteristics of the stress–strain distribution and induced magnetic field are determined; and their singularities in the neighborhood of the crack are analyzed. Formulas for the stress intensity factors of the mechanical and magnetic fields near the crack tip are presented  相似文献   

20.
The paper studies the stress rupture behavior of a reinforced viscoelastic composite through which a penny-shaped mode I crack propagates under a constant load. The composite has hexagonal symmetry and consists of elastic isotropic fibers and viscoelastic isotropic matrix. The material is modeled as a transversely isotropic homogeneous viscoelastic medium with effective characteristics. The crack is in the isotropy plane. The ring-shaped fracture process zone at the crack front is modeled by a modified Dugdale zone with time-dependent stresses. The viscoelastic properties of the matrix are characterized using a resolvent integral operator. Use is made of Volterra's principle, the method of operator continued fractions, and the theory of precritical crack growth in viscoelastic bodies. The problem is reduced to nonlinear integral equations. Numerical results are obtained for certain components of the composite, constant volume fractions, and different fracture strengths Translated from Prikladnaya Mekhanika, Vol. 44, No. 8, pp. 45–51, August 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号