首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The steady flow in a parallel plate channel rotating with an angular velocity Ω and subjected to a constant transverse magnetic field is analysed. An exact solution of the governing equations is obtained. The solution in the dimensionless form contains two parameters: the Hartmann number, M 2, and K 2 which is the reciprocal of the Ekman number. The effects of these parameters on the velocity and magnetic field distributions are studied. For large values of the parameters, there arise thin boundary layers on the walls of the channel.  相似文献   

2.
A numerical study of pulsatile flow and mass transfer of an electrically conducting Newtonian biofluid via a channel containing porous medium is considered. The conservation equations are transformed and solved under boundary conditions prescribed at both walls of the channel, using a finite element method with two-noded line elements. The influence of magnetic field on the flow is studied using the dimensionless hydromagnetic number, Nm, which defines the ratio of magnetic (Lorentz) retarding force to the viscous hydrodynamic force. A Darcian linear impedance for low Reynolds numbers is incorporated in the transformed momentum equation and a second order drag force term for inertial (Forchheimer) effects. Velocity and concentration profiles across the channel width are plotted for various values of the Reynolds number (Re), Darcy parameter (λ), Forchheimer parameter (Nf), hydro-magnetic number (Nm), Schmidt number (Sc) and also with dimensionless time (T). Profiles of velocity varying in space and time are also provided. The conduit considered is rigid with a pulsatile pressure applied via an appropriate pressure gradient term. Increasing the hydromagnetic number (Nm) from 1 to 15 considerably depresses biofluid velocity (U) indicating that a magnetic field can be used as a flow control mechanism in, for example, medical applications. A rise in Nf from 1 to 20 strongly retards the flow development and decreases the velocity, U, across the width of the channel. The effects of other parameters on the flowfield are also discussed at length. The flow model also has applications in the analysis of electrically conducting haemotological fluids flowing through filtration media, diffusion of drug species in pharmaceutical hydromechanics, and also in general fluid dynamics of pulsatile systems.  相似文献   

3.
An analysis is performed for the hydromagnetic second grade fluid flow between two horizontal plates in a rotating system in the presence of a magnetic field.The lower sheet is considered to be a stret...  相似文献   

4.
The combined effect of rotation and magnetic field is investigated for the axisymmetric flow due to the motion of a sphere in an inviscid, incompressible electrically conducting fluid having uniform rotation far upstream. The steady-state linearized equations contain a single parameter α=1/2βR m, β being the magnetic pressure number and R m the magnetic Reynolds number. The complete solution for the flow field and magnetic field is obtained and the distribution of vorticity and current density is found. The induced vorticity is O(α4) and the current density is O(R m) on the sphere.  相似文献   

5.
In the present work, the effect of MHD flow and heat transfer within a boundary layer flow on an upper-convected Maxwell (UCM) fluid over a stretching sheet is examined. The governing boundary layer equations of motion and heat transfer are non-dimensionalized using suitable similarity variables and the resulting transformed, ordinary differential equations are then solved numerically by shooting technique with fourth order Runge–Kutta method. For a UCM fluid, a thinning of the boundary layer and a drop in wall skin friction coefficient is predicted to occur for higher the elastic number. The objective of the present work is to investigate the effect of Maxwell parameter β, magnetic parameter Mn and Prandtl number Pr on the temperature field above the sheet.  相似文献   

6.
The present investigation is concerned with the effect of Hall currents on the flow and heat transfer of an electrically conducting fluid over an unsteady stretching surface in presence of a strong magnetic field. The induced magnetic field is neglected while the electron-atom collision frequency is assumed to be relatively high, so that the Hall effect is assumed to exist. The incorrect similarity transformation of Elbashbeshy and Bazid (Heat Mass Transfer 41:1–4, 2004). is corrected and a physically realistic distribution of the velocity and temperature is obtained. Using a similarity transformation the governing time dependent boundary layer equations for momentum and thermal energy are reduced to a set of coupled ordinary differential equations which are then solved numerically by the shooting method. Effects of the magnetic field, M , Hall parameter, m, and the unsteadiness parameter, S, on the velocity and temperature profiles as well as the local skin friction coefficients and the heat transfer rate are shown graphically.  相似文献   

7.
The effect of the Hall current on the magnetohydrodynamic (MHD) natural convection flow from a vertical permeable flat plate with a uniform heat flux is analyzed in the presence of a transverse magnetic field. It is assumed that the induced magnetic field is negligible compared with the imposed magnetic field. The boundary layer equations are reduced to a suitable form by employing the free variable formulation (FVF) and the stream function formulation (SFF). The parabolic equations obtained from FVF are numerically integrated with the help of a straightforward finite difference method. Moreover, the nonsimilar system of equations obtained from SFF is solved by using a local nonsimilarity method, for the whole range of the local transpiration parameter ζ. Consideration is also given to the regions where the local transpiration parameter ζ is small or large enough. However, in these particular regions, solutions are acquired with the aid of a regular perturbation method. The effects of the magnetic field M and the Hall parameter m on the local skin friction coefficient and the local Nusselt number coefficient are graphically shown for smaller values of the Prandtl number Pr (= 0.005, 0.01, 0.05). Furthermore, the velocity and temperature profiles are also drawn from various values of the local transpiration parameter ζ.  相似文献   

8.
Closed-form solutions are derived for the steady magnetohydrodynamic (MHD) viscous flow in a parallel plate channel system with perfectly conducting walls in a rotating frame of reference, in the presence of Hall currents, heat transfer and a transverse uniform magnetic field. A mathematical analysis is described to evaluate the velocity, induced magnetic field and mass flow rate distributions, for a wide range of the governing parameters. Asymptotic behavior of the solution is analyzed for large M 2 (Hartmann number squared) and K 2 (rotation parameter). The heat transfer aspect is considered also with Joule and viscous heating effects present. Boundary layers arise close to the channel walls for large K 2, i.e. strong rotation of the channel. For slowly rotating systems (small K 2), Hall current parameter (m) reduces primary mass flow rate (Q x /R ρ v). Heat transfer rate at the upper plate (d θ/d η) η=1 decreases, while at the lower plate (d θ/d η) η=−1 increases, with increase in either K 2 or m. For constant values of the rotation parameter, K 2, heat transfer rate at both plates exhibits an oscillatory pattern with an increase in Hall current parameter, m. The response of the primary and secondary velocity components and also the primary and secondary induced magnetic field components to the control parameters is also studied graphically. Applications of the study arise in rotating MHD induction machine energy generators, planetary and solar plasma fluid dynamics systems, magnetic field control of materials processing systems, hybrid magnetic propulsion systems for space travel etc.  相似文献   

9.
A numerical investigation was conducted into channel flows with a tandem of transverse vortex generators in the form of rectangular cylinders. The oscillatory behavior of the flow is studied. Data for heat transfer and flow losses are presented for 100≤Re≤400 and cylinder separation distances 1≤S/H≤4. The results are obtained by numerical solution of the full Navier-Stokes equations and the energy equation. Self-sustained flow oscillations are found for Re>100. Alternate and dynamic shedding of large vortex structures from the cylinders is observed by visualization of the numerically determined flow field. A heat transfer enhancement up to a factor 1.78 compared to plane channel flow is observed. Received on 16 July 1997  相似文献   

10.
Summary  The nonsimilar boundary-layer flow and heat transfer over a stationary permeable surface in a rotating fluid in the presence of magnetic field, mass transfer and free stream velocity are studied. The parabolic partial differential equations governing the flow have been solved numerically by using a difference–differential method. For small streamwise distance, these partial differential equations are also solved by a perturbation technique with Shanks transformation. For uniform mass transfer, analytical solutions are obtained. The surface skin friction coefficients and the Nusselt number increase with the magnetic field, suction and streamwise distance from the leading edge of the plate except the skin friction coefficient in the y-direction which decreases with the increasing magnetic field. Received 4 December 2001; accepted for publication 24 September 2002  相似文献   

11.
In this paper, a linear stability analysis is presented to trace the time evolution of an infinitesimal, two-dimensional disturbance imposed on the base flow of an electrically conducting fluid in a channel filled with a saturated porous medium under the influence of a transversely imposed magnetic field. An eigenvalue problem is obtained and solved numerically using the Chebyshev collocation spectral method. The critical Reynolds number Re c, the critical wave number α c and the critical wave speed c c are obtained for a wide range of the porous medium shape factor parameter S and Hartmann number H. It is found that an increase in the magnetic field intensity and a decrease in porous medium permeability have a stabilizing effect on the fluid flow.  相似文献   

12.
An analysis is made for the steady two-dimensional magneto-hydrodynamic flow of an incompressible viscous and electrically conducting fluid over a stretching vertical sheet in its own plane. The stretching velocity, the surface temperature and the transverse magnetic field are assumed to vary in a power-law with the distance from the origin. The transformed boundary layer equations are solved numerically for some values of the involved parameters, namely the magnetic parameter M, the velocity exponent parameter m, the temperature exponent parameter n and the buoyancy parameter λ, while the Prandtl number Pr is fixed, namely Pr = 1, using a finite difference scheme known as the Keller-box method. Similarity solutions are obtained in the presence of the buoyancy force if n = 2m−1. The features of the flow and heat transfer characteristics for different values of the governing parameters are analyzed and discussed. It is found that both the skin friction coefficient and the local Nusselt number decrease as the magnetic parameter M increases for fixed λ and m. For m = 0.2 (i.e. n = −0.6), although the sheet and the fluid are at different temperatures, there is no local heat transfer at the surface of the sheet except at the singular point of the origin (fixed point).  相似文献   

13.
An analysis has been carried out to obtain the flow, heat and mass transfer characteristics of a viscous electrically conducting fluid having temperature dependent viscosity and thermal conductivity past a continuously stretching surface, taking into account the effect of Ohmic heating. The flow is subjected to a uniform transverse magnetic field normal to the plate. The resulting governing three-dimensional equations are transformed using suitable three-dimensional transformations and then solved numerically by using fifth order Runge–Kutta–Fehlberg scheme with a modified version of the Newton–Raphson shooting method. Favorable comparisons with previously published work are obtained. The effects of the various parameters such as magnetic parameter M, the viscosity/temperature parameter θ r , the thermal conductivity parameter S and the Eckert number Ec on the velocity, temperature, and concentration profiles, as well as the local skin-friction coefficient, local Nusselt number, and the local Sherwood number are presented graphically and in tabulated form.  相似文献   

14.
We consider the magnetohydrodynamic flow that is laminar and steady of a viscous, incompressible, and electrically conducting fluid in a semi‐infinite duct under an externally applied magnetic field. The flow is driven by the current produced by a pressure gradient. The applied magnetic field is perpendicular to the semi‐infinite walls that are kept at the same magnetic field value in magnitude but opposite in sign. The wall that connects the two semi‐infinite walls is partly non‐conducting and partly conducting (in the middle). A BEM solution was obtained using a fundamental solution that enables to treat the magnetohydrodynamic equations in coupled form with general wall conductivities. The inhomogeneity in the equations due to the pressure gradient was tackled, obtaining a particular solution, and the BEM was applied with a fundamental solution of coupled homogeneous convection–diffusion type partial differential equations. Constant elements were used for the discretization of the boundaries (y = 0, ?a ? x ? a) and semi‐infinite walls at x = ±a, by keeping them as finite since the boundary integral equations are restricted to these boundaries due to the regularity conditions as y → ∞ . The solution is presented in terms of equivelocity and induced magnetic field contours for several values of Hartmann number (M), conducting length (l), and non‐conducting wall conditions (k). The effect of the parameters on the solution is studied. Flow rates are also calculated for these values of parameters. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Mixed convection heat transfer about a semi-infinite inclined plate in the presence of magneto and thermal radiation effects is studied. The fluid is assumed to be incompressible and dense. The nonlinear coupled parabolic partial differential equations governing the flow are transformed into the non-similar boundary layer equations, which are then solved numerically using the Keller box method. The effects of the mixed convection parameter R i, the angle of inclination α, the magnetic parameter M and the radiation–conduction parameter R d on the velocity and temperature profiles as well as on the local skin friction and local heat transfer parameters. For some specific values of the governing parameters, the results are compared with those available in the literature and a fairly good agreement is obtained.  相似文献   

16.
The present analysis discusses the peristaltic flow of a nanofluid in a diverging tube. This is the first article on the peristaltic flow in nanofluids. The governing equations for nanofluid are modelled in cylindrical coordinates system. The flow is investigated in a wave frame of reference moving with velocity of the wave c. Temperature and nanoparticle equations are coupled so Homotopy perturbation method is used to calculate the solutions of temperature and nanoparticle equations, while exact solutions have been calculated for velocity profile and pressure gradient. The solution depends on Brownian motion number N b , thermophoresis number N t , local temperature Grashof number B r and local nanoparticle Grashof number G r . The effects of various emerging parameters are investigated for five different peristaltic waves. It is observed that the pressure rise decreases with the increase in thermophoresis number N t . Increase in the Brownian motion parameter N b and the thermophoresis parameter N t temperature profile increases. Streamlines have been plotted at the end of the article.  相似文献   

17.
An exact solution is presented for the hydromagnetic natural convection boundary layer flow past an infinite vertical flat plate under the influence of a transverse magnetic field with magnetic induction effects included. The transformed ordinary differential equations are solved exactly, under physically appropriate boundary conditions. Closed-form expressions are obtained for the non-dimensional velocity (u), non-dimensional induced magnetic field component (B x ) and wall frictional shearing stress i.e. skin friction function (τ x ) as functions of dimensionless transverse coordinate (η), Grashof free convection number (G r ) and the Hartmann number (M). The bulk temperature in the boundary layer (Θ) is also evaluated and shown to be purely a function of M. The Rayleigh flow distribution (R) is derived and found to be a function of both Hartmann number (M) and the buoyant diffusivity parameter (ϑ *). The influence of Grashof number on velocity, induced magnetic field and wall shear stress profiles is computed. The response of Rayleigh flow distribution to Grashof numbers ranging from 2 to 200 is also discussed as is the influence of Hartmann number on the bulk temperature. Rayleigh flow is demonstrated to become stable with respect to the width of the boundary layer region and intensifies with greater magnetic field i.e. larger Hartman number M, for constant buoyant diffusivity parameter ϑ *. The induced magnetic field (B x ), is elevated in the vicinity of the plate surface with a rise in free convection (buoyancy) parameter G r , but is reduced over the central zone of the boundary layer regime. Applications of the study include laminar magneto-aerodynamics, materials processing and MHD propulsion thermo-fluid dynamics.  相似文献   

18.
 Unsteady turbulent near wake of a rectangular cylinder in channel flow has been studied experimentally with a laser Doppler velocimetry (LDV). The time-averaged and phase-averaged statistics were measured for the cylinders having various width-to-height ratios, b/h. It is shown that the turbulent intensities on the centerline of the channel have their maxima near the rear stagnation point of a recirculation region. The contours of coherent vorticity and streamline reproduce clearly the shed vortices from the cylinder observed by the flow visualization. The characteristics of the flow field, which depends on b/h, are discussed and the significant contribution of the coherent structure to the flow field is clarified. Moreover, the turbulent kinetic energy budget has been examined. Received: 19 January 1998/Accepted: 21 July 1998  相似文献   

19.
Steady mixed convection boundary layer flow from an isothermal horizontal circular cylinder embedded in a porous medium filled with a nanofluid has been studied for both cases of a heated and cooled cylinder. The resulting system of nonlinear partial differential equations is solved numerically using an implicit finite-difference scheme. The solutions for the flow and heat transfer characteristics are evaluated numerically for various values of the governing parameters, namely the nanoparticle volume fraction φ and the mixed convection parameter λ. Three different types of nanoparticles are considered, namely Cu, Al2O3 and TiO2. It is found that for each particular nanoparticle, as the nanoparticle volume fraction φ increases, the magnitude of the skin friction coefficient decreases, and this leads to an increase in the value of the mixed convection parameter λ which first produces no separation. On the other hand, it is also found that of all the three types of nanoparticles considered, for any fixed values of φ and λ, the nanoparticle Cu gives the largest values of the skin friction coefficient followed by TiO2 and Al2O3. Finally, it is worth mentioning that heating the cylinder (λ > 0) delays separation of the boundary layer and if the cylinder is hot enough (large values of λ > 0), then it is suppressed completely. On the other hand, cooling the cylinder (λ < 0) brings the boundary layer separation point nearer to the lower stagnation point and for a sufficiently cold cylinder (large values of λ < 0) there will not be a boundary layer on the cylinder.  相似文献   

20.
In this paper, the basic equations of two-phase liquid metal flow in a magnetic field are derived, and specifically, two-phase liquid metal MHD flow in a rectangular channel is studied, and the expressions of velocity distribution of liquid and gas phases and the ratioK 0 of the pressure drop in two-phase MHD flow to that in single-phase are derived. Results of calculation show that the ratioK 0 is smaller than unity and decreases with increasing void fraction and Hartmann number because the effective electrical conductivity in the two-phase case decreases. The Project is supported by the National Natural Science Foundation of China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号